{"title":"高效钙钛矿太阳能电池和组件的低压混合化学气相沉积","authors":"Ming-Hsien Li, Po-Shen Shen, Jia-Shin Chen, Yu-Hsien Chiang, Peter Chen, Tzung‐Fang Guo","doi":"10.1109/AM-FPD.2016.7543684","DOIUrl":null,"url":null,"abstract":"Vapor-based deposition technique is considered as a promising approach for preparing a high-quality and uniform perovskite thin film. With evolution from coevaporation deposition to a low-pressure vapor-assisted solution process, both energy budget and reaction yield for perovskite film fabrications are improved. In this work, a low-pressure hybrid chemical vapor deposition (LPHCVD) method is applied to fabricate CH3NH3PbI3 perovskite films. The crucial dependence of working pressure on the perovskite formation is revealed. Moreover, the reaction time plays an important role in controlling the quality of the synthesized perovskite film. Efficient mesoscopic perovskite solar cells of 14.99% and perovskite modules (active area of 8.4 cm2) of 6.22% are achieved by this LPHCVD method.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module\",\"authors\":\"Ming-Hsien Li, Po-Shen Shen, Jia-Shin Chen, Yu-Hsien Chiang, Peter Chen, Tzung‐Fang Guo\",\"doi\":\"10.1109/AM-FPD.2016.7543684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vapor-based deposition technique is considered as a promising approach for preparing a high-quality and uniform perovskite thin film. With evolution from coevaporation deposition to a low-pressure vapor-assisted solution process, both energy budget and reaction yield for perovskite film fabrications are improved. In this work, a low-pressure hybrid chemical vapor deposition (LPHCVD) method is applied to fabricate CH3NH3PbI3 perovskite films. The crucial dependence of working pressure on the perovskite formation is revealed. Moreover, the reaction time plays an important role in controlling the quality of the synthesized perovskite film. Efficient mesoscopic perovskite solar cells of 14.99% and perovskite modules (active area of 8.4 cm2) of 6.22% are achieved by this LPHCVD method.\",\"PeriodicalId\":422453,\"journal\":{\"name\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2016.7543684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module
Vapor-based deposition technique is considered as a promising approach for preparing a high-quality and uniform perovskite thin film. With evolution from coevaporation deposition to a low-pressure vapor-assisted solution process, both energy budget and reaction yield for perovskite film fabrications are improved. In this work, a low-pressure hybrid chemical vapor deposition (LPHCVD) method is applied to fabricate CH3NH3PbI3 perovskite films. The crucial dependence of working pressure on the perovskite formation is revealed. Moreover, the reaction time plays an important role in controlling the quality of the synthesized perovskite film. Efficient mesoscopic perovskite solar cells of 14.99% and perovskite modules (active area of 8.4 cm2) of 6.22% are achieved by this LPHCVD method.