{"title":"基于HTTP的动态自适应流的元学习框架","authors":"","doi":"10.30534/ijccn/2023/021222023","DOIUrl":null,"url":null,"abstract":"This work presents a framework with a taxonomy on meta-learning used in Dynamic Adaptive Streaming over HTTP (DASH). With the increasing complexity of network conditions and user preferences, there is a need for efficient adaptation mechanisms in DASH to provide optimal quality of experience (QoE) for users. Meta-learning, or learning to learn, has emerged as a promising approach to enhance adaptive streaming algorithms in DASH by leveraging prior knowledge and experiences. The proposed framework provides a systematic and structured approach for applying meta-learning techniques in the context of DASH. It encompasses essential components, including data collection and preprocessing, meta-model architecture, meta-training, meta-testing, fine-tuning, and continuous improvement. The taxonomy within the framework categorizes various aspects of meta-learning in DASH, such as meta-learning approaches, components, objectives, and applications","PeriodicalId":313852,"journal":{"name":"International Journal of Computing, Communications and Networking","volume":"16 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Meta-Learning in Dynamic Adaptive Streaming over HTTP\",\"authors\":\"\",\"doi\":\"10.30534/ijccn/2023/021222023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a framework with a taxonomy on meta-learning used in Dynamic Adaptive Streaming over HTTP (DASH). With the increasing complexity of network conditions and user preferences, there is a need for efficient adaptation mechanisms in DASH to provide optimal quality of experience (QoE) for users. Meta-learning, or learning to learn, has emerged as a promising approach to enhance adaptive streaming algorithms in DASH by leveraging prior knowledge and experiences. The proposed framework provides a systematic and structured approach for applying meta-learning techniques in the context of DASH. It encompasses essential components, including data collection and preprocessing, meta-model architecture, meta-training, meta-testing, fine-tuning, and continuous improvement. The taxonomy within the framework categorizes various aspects of meta-learning in DASH, such as meta-learning approaches, components, objectives, and applications\",\"PeriodicalId\":313852,\"journal\":{\"name\":\"International Journal of Computing, Communications and Networking\",\"volume\":\"16 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijccn/2023/021222023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijccn/2023/021222023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for Meta-Learning in Dynamic Adaptive Streaming over HTTP
This work presents a framework with a taxonomy on meta-learning used in Dynamic Adaptive Streaming over HTTP (DASH). With the increasing complexity of network conditions and user preferences, there is a need for efficient adaptation mechanisms in DASH to provide optimal quality of experience (QoE) for users. Meta-learning, or learning to learn, has emerged as a promising approach to enhance adaptive streaming algorithms in DASH by leveraging prior knowledge and experiences. The proposed framework provides a systematic and structured approach for applying meta-learning techniques in the context of DASH. It encompasses essential components, including data collection and preprocessing, meta-model architecture, meta-training, meta-testing, fine-tuning, and continuous improvement. The taxonomy within the framework categorizes various aspects of meta-learning in DASH, such as meta-learning approaches, components, objectives, and applications