Jing Shu, Junming Wang, Yujie Su, Honghai Liu, Zheng Li, Raymond K. Tong
{"title":"基于kirigami型压阻传感器的软弯曲执行器端到端姿态感知方法","authors":"Jing Shu, Junming Wang, Yujie Su, Honghai Liu, Zheng Li, Raymond K. Tong","doi":"10.1109/BSN56160.2022.9928494","DOIUrl":null,"url":null,"abstract":"Posture sensing of soft actuators is critical for performing closed-loop control of soft robots. This paper presents a novel end-to-end posture perception method for soft actuators by developing long short-term memory (LSTM) neural networks. A novel flexible bending sensor developed from off-the-shelf conductive silicon material was proposed and used for posture sensing. In the proposed method, the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors have also been considered. With one-step calibration from the sensor output, the posture of the soft actuator could be captured by the LSTM network. The method was validated on a finger-size one DOF pneumatic fiber-reinforced bending actuator. Four kirigami-inspired flexible piezoresistive transducers were placed on the top surface of the actuator. Results show that the transducers could sense the posture of the actuator with acceptable accuracy. We believe our work could benefit soft robot dynamic posture perception and closed-loop control.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An End-to-end Posture Perception Method for Soft Bending Actuators Based on Kirigami-inspired Piezoresistive Sensors\",\"authors\":\"Jing Shu, Junming Wang, Yujie Su, Honghai Liu, Zheng Li, Raymond K. Tong\",\"doi\":\"10.1109/BSN56160.2022.9928494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Posture sensing of soft actuators is critical for performing closed-loop control of soft robots. This paper presents a novel end-to-end posture perception method for soft actuators by developing long short-term memory (LSTM) neural networks. A novel flexible bending sensor developed from off-the-shelf conductive silicon material was proposed and used for posture sensing. In the proposed method, the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors have also been considered. With one-step calibration from the sensor output, the posture of the soft actuator could be captured by the LSTM network. The method was validated on a finger-size one DOF pneumatic fiber-reinforced bending actuator. Four kirigami-inspired flexible piezoresistive transducers were placed on the top surface of the actuator. Results show that the transducers could sense the posture of the actuator with acceptable accuracy. We believe our work could benefit soft robot dynamic posture perception and closed-loop control.\",\"PeriodicalId\":150990,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN56160.2022.9928494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An End-to-end Posture Perception Method for Soft Bending Actuators Based on Kirigami-inspired Piezoresistive Sensors
Posture sensing of soft actuators is critical for performing closed-loop control of soft robots. This paper presents a novel end-to-end posture perception method for soft actuators by developing long short-term memory (LSTM) neural networks. A novel flexible bending sensor developed from off-the-shelf conductive silicon material was proposed and used for posture sensing. In the proposed method, the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors have also been considered. With one-step calibration from the sensor output, the posture of the soft actuator could be captured by the LSTM network. The method was validated on a finger-size one DOF pneumatic fiber-reinforced bending actuator. Four kirigami-inspired flexible piezoresistive transducers were placed on the top surface of the actuator. Results show that the transducers could sense the posture of the actuator with acceptable accuracy. We believe our work could benefit soft robot dynamic posture perception and closed-loop control.