{"title":"一种增量时序分析算法","authors":"Jin-fuw Lee, D. Tang","doi":"10.1145/217474.217613","DOIUrl":null,"url":null,"abstract":"In recent years, many new algorithms have been proposed for performing a complete timing analysis of sequential logic circuits. In this paper, we present an incremental timing analysis algorithm. When an incremental design change is made on the logic network, this algorithm will identify the portion of design for which the timing is affected, and quickly derive the new arrival times and slacks. A fast incremental timing analysis is desirable for users doing interactive logic design. It is particularly important for a logic synthesis program, which needs to evaluate the circuit delays under many logic modifications.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An Algorithm for Incremental Timing Analysis\",\"authors\":\"Jin-fuw Lee, D. Tang\",\"doi\":\"10.1145/217474.217613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many new algorithms have been proposed for performing a complete timing analysis of sequential logic circuits. In this paper, we present an incremental timing analysis algorithm. When an incremental design change is made on the logic network, this algorithm will identify the portion of design for which the timing is affected, and quickly derive the new arrival times and slacks. A fast incremental timing analysis is desirable for users doing interactive logic design. It is particularly important for a logic synthesis program, which needs to evaluate the circuit delays under many logic modifications.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In recent years, many new algorithms have been proposed for performing a complete timing analysis of sequential logic circuits. In this paper, we present an incremental timing analysis algorithm. When an incremental design change is made on the logic network, this algorithm will identify the portion of design for which the timing is affected, and quickly derive the new arrival times and slacks. A fast incremental timing analysis is desirable for users doing interactive logic design. It is particularly important for a logic synthesis program, which needs to evaluate the circuit delays under many logic modifications.