Mingcheng Zhang, Qianqian Liu, Weipei Sun, Ke Sun, Yucheng Shen, W. An, Lu Zhang, Hui Chen, Xiaoxin Zou
{"title":"纳米结构金属间化合物:从理性合成到能量电催化","authors":"Mingcheng Zhang, Qianqian Liu, Weipei Sun, Ke Sun, Yucheng Shen, W. An, Lu Zhang, Hui Chen, Xiaoxin Zou","doi":"10.20517/cs.2023.17","DOIUrl":null,"url":null,"abstract":"Intermetallics are a large family of structurally ordered alloys that combines a metal element with other metal/metalloid elements with a clearly defined stoichiometric ratio. Intermetallics possess abundant crystal structures and atomic packing motifs, giving rise to a great variety of electronic configurations and surface adsorption properties. The wide electronic and geometric diversity makes intermetallics a highly promising population for discovering advanced materials for various catalytic applications. This review presents recent advances in the reaction synthesis of intermetallic materials at the nanoscale and their energy-related electrocatalytic applications. Initially, we introduce general principles for the formation of stable intermetallic structures. Subsequently, we elaborate on common synthetic strategies of nanostructured intermetallics, such as thermal annealing, wet-chemical methods, metallothermic reduction, and template-directed synthesis. Furthermore, we discuss the wide employment of these intermetallic nanocatalysts in many different kinds of electrocatalytic applications, as well as highlight the theoretical and experimental evidence for establishing a reasonable relationship between atomic arrangement and catalytic activity. Finally, we propose some perspectives for future developments of intermetallic preparation and catalytic applications.","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nanostructured intermetallics: from rational synthesis to energy electrocatalysis\",\"authors\":\"Mingcheng Zhang, Qianqian Liu, Weipei Sun, Ke Sun, Yucheng Shen, W. An, Lu Zhang, Hui Chen, Xiaoxin Zou\",\"doi\":\"10.20517/cs.2023.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermetallics are a large family of structurally ordered alloys that combines a metal element with other metal/metalloid elements with a clearly defined stoichiometric ratio. Intermetallics possess abundant crystal structures and atomic packing motifs, giving rise to a great variety of electronic configurations and surface adsorption properties. The wide electronic and geometric diversity makes intermetallics a highly promising population for discovering advanced materials for various catalytic applications. This review presents recent advances in the reaction synthesis of intermetallic materials at the nanoscale and their energy-related electrocatalytic applications. Initially, we introduce general principles for the formation of stable intermetallic structures. Subsequently, we elaborate on common synthetic strategies of nanostructured intermetallics, such as thermal annealing, wet-chemical methods, metallothermic reduction, and template-directed synthesis. Furthermore, we discuss the wide employment of these intermetallic nanocatalysts in many different kinds of electrocatalytic applications, as well as highlight the theoretical and experimental evidence for establishing a reasonable relationship between atomic arrangement and catalytic activity. Finally, we propose some perspectives for future developments of intermetallic preparation and catalytic applications.\",\"PeriodicalId\":381136,\"journal\":{\"name\":\"Chemical Synthesis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/cs.2023.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanostructured intermetallics: from rational synthesis to energy electrocatalysis
Intermetallics are a large family of structurally ordered alloys that combines a metal element with other metal/metalloid elements with a clearly defined stoichiometric ratio. Intermetallics possess abundant crystal structures and atomic packing motifs, giving rise to a great variety of electronic configurations and surface adsorption properties. The wide electronic and geometric diversity makes intermetallics a highly promising population for discovering advanced materials for various catalytic applications. This review presents recent advances in the reaction synthesis of intermetallic materials at the nanoscale and their energy-related electrocatalytic applications. Initially, we introduce general principles for the formation of stable intermetallic structures. Subsequently, we elaborate on common synthetic strategies of nanostructured intermetallics, such as thermal annealing, wet-chemical methods, metallothermic reduction, and template-directed synthesis. Furthermore, we discuss the wide employment of these intermetallic nanocatalysts in many different kinds of electrocatalytic applications, as well as highlight the theoretical and experimental evidence for establishing a reasonable relationship between atomic arrangement and catalytic activity. Finally, we propose some perspectives for future developments of intermetallic preparation and catalytic applications.