具有避难阶段结构猎物种群的捕食-捕食模型边界平衡点的稳定性

Xiaoran Li, Qin Yue, Fengde Chen
{"title":"具有避难阶段结构猎物种群的捕食-捕食模型边界平衡点的稳定性","authors":"Xiaoran Li, Qin Yue, Fengde Chen","doi":"10.1109/ELECS55825.2022.00008","DOIUrl":null,"url":null,"abstract":"We revisit the stability property of the boundary equilibria of a prey-predator model with a refuge-stage structure prey population. For the vanishing equilibrium point, our study shows that the conditions that ensure the local stability of the vanishing point are enough to ensure its global stability. The differential inequality theory is used to derive a set of easily verifiable requirements ensuring predator-free equilibrium’s global asymptotically stable behavior. Our results essentially improve some known results.","PeriodicalId":320259,"journal":{"name":"2022 6th European Conference on Electrical Engineering & Computer Science (ELECS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the Stability Property of the Boundary Equilibria of a Prey-Predator Model with a Refuge-Stage Structure Prey Population\",\"authors\":\"Xiaoran Li, Qin Yue, Fengde Chen\",\"doi\":\"10.1109/ELECS55825.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the stability property of the boundary equilibria of a prey-predator model with a refuge-stage structure prey population. For the vanishing equilibrium point, our study shows that the conditions that ensure the local stability of the vanishing point are enough to ensure its global stability. The differential inequality theory is used to derive a set of easily verifiable requirements ensuring predator-free equilibrium’s global asymptotically stable behavior. Our results essentially improve some known results.\",\"PeriodicalId\":320259,\"journal\":{\"name\":\"2022 6th European Conference on Electrical Engineering & Computer Science (ELECS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th European Conference on Electrical Engineering & Computer Science (ELECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECS55825.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th European Conference on Electrical Engineering & Computer Science (ELECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECS55825.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重新研究了具有避难阶段结构猎物种群的捕食者-猎物模型边界平衡的稳定性。对于消失平衡点,我们的研究表明,保证消失点局部稳定的条件足以保证其全局稳定。利用微分不等式理论导出了一组易于验证的条件,以保证无捕食者均衡的全局渐近稳定行为。我们的结果基本上改进了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the Stability Property of the Boundary Equilibria of a Prey-Predator Model with a Refuge-Stage Structure Prey Population
We revisit the stability property of the boundary equilibria of a prey-predator model with a refuge-stage structure prey population. For the vanishing equilibrium point, our study shows that the conditions that ensure the local stability of the vanishing point are enough to ensure its global stability. The differential inequality theory is used to derive a set of easily verifiable requirements ensuring predator-free equilibrium’s global asymptotically stable behavior. Our results essentially improve some known results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信