小波去噪的信号波形恢复

S.Q. Wu, P. C. Ching
{"title":"小波去噪的信号波形恢复","authors":"S.Q. Wu, P. C. Ching","doi":"10.1109/TFSA.1996.546693","DOIUrl":null,"url":null,"abstract":"In this paper, we first establish an approximated sampling theorem for an arbitrary continuous signal which is essential for wavelet analysis. The differences and similarities between quadrature mirror filter decomposition and wavelet decomposition are contrasted. We then propose an efficient way to recover a source signal buried in white noise by using wavelet denoising. The method is capable of reducing the mean square error bound from O(log/sup 2/(n)) to O(log(n)), where n is the number of samples. It is also shown that the new estimator is asymptotically unbiased if the source signal is a piece-wise polynomial.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Signal waveform restoration by wavelet denoising\",\"authors\":\"S.Q. Wu, P. C. Ching\",\"doi\":\"10.1109/TFSA.1996.546693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first establish an approximated sampling theorem for an arbitrary continuous signal which is essential for wavelet analysis. The differences and similarities between quadrature mirror filter decomposition and wavelet decomposition are contrasted. We then propose an efficient way to recover a source signal buried in white noise by using wavelet denoising. The method is capable of reducing the mean square error bound from O(log/sup 2/(n)) to O(log(n)), where n is the number of samples. It is also shown that the new estimator is asymptotically unbiased if the source signal is a piece-wise polynomial.\",\"PeriodicalId\":415923,\"journal\":{\"name\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1996.546693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.546693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首先建立了任意连续信号的近似抽样定理,这是小波分析所必需的。对比了正交镜像滤波分解与小波分解的异同。然后,我们提出了一种利用小波去噪的方法来有效地恢复被白噪声掩埋的源信号。该方法能够将均方误差范围从O(log/sup 2/(n))减小到O(log(n)),其中n为样本数。当源信号为分段多项式时,新的估计量是渐近无偏的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal waveform restoration by wavelet denoising
In this paper, we first establish an approximated sampling theorem for an arbitrary continuous signal which is essential for wavelet analysis. The differences and similarities between quadrature mirror filter decomposition and wavelet decomposition are contrasted. We then propose an efficient way to recover a source signal buried in white noise by using wavelet denoising. The method is capable of reducing the mean square error bound from O(log/sup 2/(n)) to O(log(n)), where n is the number of samples. It is also shown that the new estimator is asymptotically unbiased if the source signal is a piece-wise polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信