重音注释乌尔都语语料库构建TTS女声

B. Mumtaz, Saba Urooj, S. Hussain, Wajiha Habib
{"title":"重音注释乌尔都语语料库构建TTS女声","authors":"B. Mumtaz, Saba Urooj, S. Hussain, Wajiha Habib","doi":"10.1109/ICSDA.2015.7357857","DOIUrl":null,"url":null,"abstract":"This research describes the stress annotation process for the two hours of Urdu speech corpus containing 18,640 words and 28,866 syllables to build a natural voice for Text-to-speech (TTS) system. For the stress annotation of speech corpus, two algorithms i.e. phonological and acoustic stress marking algorithms have been tested in comparison to perceptual stress marking. Urdu phonological stress markings algorithm [1] reports 70% accuracy whereas Urdu acoustic stress marking algorithm developed through this research reports 81.2% accuracy. This acoustic stress marking algorithm is then used to annotate two hours of Urdu speech corpus. It is a semi-automatic acoustic stress marking algorithm, which annotates 54% data automatically using duration cue whereas 46% data is marked manually using the acoustic cues of pitch, glottalization and intensity.","PeriodicalId":290790,"journal":{"name":"2015 International Conference Oriental COCOSDA held jointly with 2015 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stress annotated Urdu speech corpus to build female voice for TTS\",\"authors\":\"B. Mumtaz, Saba Urooj, S. Hussain, Wajiha Habib\",\"doi\":\"10.1109/ICSDA.2015.7357857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research describes the stress annotation process for the two hours of Urdu speech corpus containing 18,640 words and 28,866 syllables to build a natural voice for Text-to-speech (TTS) system. For the stress annotation of speech corpus, two algorithms i.e. phonological and acoustic stress marking algorithms have been tested in comparison to perceptual stress marking. Urdu phonological stress markings algorithm [1] reports 70% accuracy whereas Urdu acoustic stress marking algorithm developed through this research reports 81.2% accuracy. This acoustic stress marking algorithm is then used to annotate two hours of Urdu speech corpus. It is a semi-automatic acoustic stress marking algorithm, which annotates 54% data automatically using duration cue whereas 46% data is marked manually using the acoustic cues of pitch, glottalization and intensity.\",\"PeriodicalId\":290790,\"journal\":{\"name\":\"2015 International Conference Oriental COCOSDA held jointly with 2015 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference Oriental COCOSDA held jointly with 2015 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSDA.2015.7357857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference Oriental COCOSDA held jointly with 2015 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2015.7357857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究描述了对2小时的乌尔都语语音语料库(18,640个单词,28,866个音节)的重音标注过程,以构建文本到语音(TTS)系统的自然语音。对于语音语料库的重音标注,我们测试了语音重音标注和声学重音标注两种算法,并与感知重音标注进行了比较。乌尔都语语音重音标记算法[1]的准确率为70%,而本研究开发的乌尔都语声学重音标记算法的准确率为81.2%。然后使用该声学重音标注算法对两小时的乌尔都语语料库进行标注。它是一种半自动声应力标记算法,其中54%的数据使用持续时间线索自动标注,46%的数据使用音调、全球化和强度等声学线索手动标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress annotated Urdu speech corpus to build female voice for TTS
This research describes the stress annotation process for the two hours of Urdu speech corpus containing 18,640 words and 28,866 syllables to build a natural voice for Text-to-speech (TTS) system. For the stress annotation of speech corpus, two algorithms i.e. phonological and acoustic stress marking algorithms have been tested in comparison to perceptual stress marking. Urdu phonological stress markings algorithm [1] reports 70% accuracy whereas Urdu acoustic stress marking algorithm developed through this research reports 81.2% accuracy. This acoustic stress marking algorithm is then used to annotate two hours of Urdu speech corpus. It is a semi-automatic acoustic stress marking algorithm, which annotates 54% data automatically using duration cue whereas 46% data is marked manually using the acoustic cues of pitch, glottalization and intensity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信