协作生成内容的时间潜在语义分析:初步结果

Yu Wang, Eugene Agichtein
{"title":"协作生成内容的时间潜在语义分析:初步结果","authors":"Yu Wang, Eugene Agichtein","doi":"10.1145/2009916.2010091","DOIUrl":null,"url":null,"abstract":"Latent semantic analysis (LSA) has been intensively studied because of its wide application to Information Retrieval and Natural Language Processing. Yet, traditional models such as LSA only examine one (current) version of the document. However, due to the recent proliferation of collaboratively generated content such as threads in online forums, Collaborative Question Answering archives, Wikipedia, and other versioned content, the document generation process is now directly observable. In this study, we explore how this additional temporal information about the document evolution could be used to enhance the identification of latent document topics. Specifically, we propose a novel hidden-topic modeling algorithm, temporal Latent Semantic Analysis (tLSA), which elegantly extends LSA to modeling document revision history using tensor decomposition. Our experiments show that tLSA outperforms LSA on word relatedness estimation using benchmark data, and explore applications of tLSA for other tasks.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Temporal latent semantic analysis for collaboratively generated content: preliminary results\",\"authors\":\"Yu Wang, Eugene Agichtein\",\"doi\":\"10.1145/2009916.2010091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent semantic analysis (LSA) has been intensively studied because of its wide application to Information Retrieval and Natural Language Processing. Yet, traditional models such as LSA only examine one (current) version of the document. However, due to the recent proliferation of collaboratively generated content such as threads in online forums, Collaborative Question Answering archives, Wikipedia, and other versioned content, the document generation process is now directly observable. In this study, we explore how this additional temporal information about the document evolution could be used to enhance the identification of latent document topics. Specifically, we propose a novel hidden-topic modeling algorithm, temporal Latent Semantic Analysis (tLSA), which elegantly extends LSA to modeling document revision history using tensor decomposition. Our experiments show that tLSA outperforms LSA on word relatedness estimation using benchmark data, and explore applications of tLSA for other tasks.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

潜在语义分析由于在信息检索和自然语言处理中有着广泛的应用而受到广泛的研究。然而,像LSA这样的传统模型只检查文档的一个(当前)版本。然而,由于最近协作生成内容(如在线论坛中的线程、协作问答档案、Wikipedia和其他版本内容)的激增,文档生成过程现在可以直接观察到。在这项研究中,我们探讨了如何利用这些关于文档演变的额外时间信息来增强对潜在文档主题的识别。具体来说,我们提出了一种新的隐藏主题建模算法,即时间潜在语义分析(tLSA),它使用张量分解将LSA优雅地扩展到文档修订历史建模。我们的实验表明,使用基准数据,tLSA在词相关性估计上优于LSA,并探索了tLSA在其他任务中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal latent semantic analysis for collaboratively generated content: preliminary results
Latent semantic analysis (LSA) has been intensively studied because of its wide application to Information Retrieval and Natural Language Processing. Yet, traditional models such as LSA only examine one (current) version of the document. However, due to the recent proliferation of collaboratively generated content such as threads in online forums, Collaborative Question Answering archives, Wikipedia, and other versioned content, the document generation process is now directly observable. In this study, we explore how this additional temporal information about the document evolution could be used to enhance the identification of latent document topics. Specifically, we propose a novel hidden-topic modeling algorithm, temporal Latent Semantic Analysis (tLSA), which elegantly extends LSA to modeling document revision history using tensor decomposition. Our experiments show that tLSA outperforms LSA on word relatedness estimation using benchmark data, and explore applications of tLSA for other tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信