可分解系统的主动学习

Omar al Duhaiby, J. F. Groote
{"title":"可分解系统的主动学习","authors":"Omar al Duhaiby, J. F. Groote","doi":"10.1145/3372020.3391560","DOIUrl":null,"url":null,"abstract":"Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\\rightarrow$Model development and analysis;• Theory of computation $\\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\\rightarrow$ Model-driven software engineering.","PeriodicalId":448369,"journal":{"name":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning of Decomposable Systems\",\"authors\":\"Omar al Duhaiby, J. F. Groote\",\"doi\":\"10.1145/3372020.3391560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\\\\rightarrow$Model development and analysis;• Theory of computation $\\\\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\\\\rightarrow$ Model-driven software engineering.\",\"PeriodicalId\":448369,\"journal\":{\"name\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372020.3391560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372020.3391560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动自动机学习是一种查询黑盒系统并对其行为建模的技术。在本文中,我们的目标是将主动学习应用于部分。我们将系统上的条件形式化——用一组可分解的动作——使局部学习成为可能。系统本身可以通过不相交的动作子集进行分解。学习这些子系统/组件需要较少的时间和资源。我们证明了该技术既适用于两个分量,也适用于任意数量的分量。我们通过一个经典的例子和一个来自行业的真实例子来说明这种技术的有用性。计算方法模型开发和分析计算理论形式语言和自动机理论主动学习;•软件及其工程模型驱动软件工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning of Decomposable Systems
Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\rightarrow$Model development and analysis;• Theory of computation $\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\rightarrow$ Model-driven software engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信