智能电网通信网络黑洞攻击的随机几何分析

Syed Ali Raza Zaidi, M. Ghogho
{"title":"智能电网通信网络黑洞攻击的随机几何分析","authors":"Syed Ali Raza Zaidi, M. Ghogho","doi":"10.1109/SmartGridComm.2012.6486071","DOIUrl":null,"url":null,"abstract":"In this article, we develop a stochastic geometric framework for the performance analysis of a large scale smart grid communication network. Our proposed model caters for both topological and channel dynamics. More specifically, we consider a smart grid communication network where an arbitrary smart meter communicates with the metering head-end in a multi-hop manner. Spatial configuration of data aggregation points, which act as relays for the smart meter transmission, is captured using a homogeneous Poisson point process. Optimization of coverage by adaptation of a device level parameter such as transmit power and/or a network level parameter such as aggregation point density is also briefly discussed. The proposed framework is employed to quantify the performance degradation encountered in the presence of malicious black hole attackers. It is shown that the performance degradation can be measured in terms of “welfare loss” or equivalently in terms of outage probability difference. The cross layer approach adapted in this paper demonstrates that the end-to-end outage probability in the presence of attackers can be minimized by adapting the desired signal to noise ratio threshold or equivalently the transmission rate.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Stochastic geometric analysis of black hole attack on smart grid communication networks\",\"authors\":\"Syed Ali Raza Zaidi, M. Ghogho\",\"doi\":\"10.1109/SmartGridComm.2012.6486071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop a stochastic geometric framework for the performance analysis of a large scale smart grid communication network. Our proposed model caters for both topological and channel dynamics. More specifically, we consider a smart grid communication network where an arbitrary smart meter communicates with the metering head-end in a multi-hop manner. Spatial configuration of data aggregation points, which act as relays for the smart meter transmission, is captured using a homogeneous Poisson point process. Optimization of coverage by adaptation of a device level parameter such as transmit power and/or a network level parameter such as aggregation point density is also briefly discussed. The proposed framework is employed to quantify the performance degradation encountered in the presence of malicious black hole attackers. It is shown that the performance degradation can be measured in terms of “welfare loss” or equivalently in terms of outage probability difference. The cross layer approach adapted in this paper demonstrates that the end-to-end outage probability in the presence of attackers can be minimized by adapting the desired signal to noise ratio threshold or equivalently the transmission rate.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6486071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6486071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们开发了一个用于大规模智能电网通信网络性能分析的随机几何框架。我们提出的模型兼顾了拓扑和通道动力学。更具体地说,我们考虑一个智能电网通信网络,其中任意智能电表以多跳方式与计量端通信。作为智能电表传输中继的数据聚合点的空间配置使用均匀泊松点过程捕获。还简要讨论了通过自适应诸如发射功率之类的设备级参数和/或诸如汇聚点密度之类的网络级参数来优化覆盖。所提出的框架用于量化在存在恶意黑洞攻击者时遇到的性能下降。结果表明,性能下降可以用“福利损失”来衡量,也可以用停机概率差来衡量。本文采用的跨层方法表明,在攻击者存在的情况下,可以通过调整期望的信噪比阈值或等效的传输速率来最小化端到端中断概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic geometric analysis of black hole attack on smart grid communication networks
In this article, we develop a stochastic geometric framework for the performance analysis of a large scale smart grid communication network. Our proposed model caters for both topological and channel dynamics. More specifically, we consider a smart grid communication network where an arbitrary smart meter communicates with the metering head-end in a multi-hop manner. Spatial configuration of data aggregation points, which act as relays for the smart meter transmission, is captured using a homogeneous Poisson point process. Optimization of coverage by adaptation of a device level parameter such as transmit power and/or a network level parameter such as aggregation point density is also briefly discussed. The proposed framework is employed to quantify the performance degradation encountered in the presence of malicious black hole attackers. It is shown that the performance degradation can be measured in terms of “welfare loss” or equivalently in terms of outage probability difference. The cross layer approach adapted in this paper demonstrates that the end-to-end outage probability in the presence of attackers can be minimized by adapting the desired signal to noise ratio threshold or equivalently the transmission rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信