基于ARCore的移动机器人运动学交互学习

Abhidipta Mallik, V. Kapila
{"title":"基于ARCore的移动机器人运动学交互学习","authors":"Abhidipta Mallik, V. Kapila","doi":"10.1109/ICRAE50850.2020.9310865","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed several educational innovations to provide effective and engaging classroom instruction with the integration of immersive interactions based on augmented reality and virtual reality (AR/VR). This paper outlines the development of an ARCore-based application (app) that can impart interactive experiences for hands-on learning in engineering laboratories. The ARCore technology enables a smartphone to sense its environment and detect horizontal and vertical surfaces, thus allowing the smartphone to estimate any position in its workspace. In this mobile app, with touch-based interaction and AR feedback, the user can interact with a wheeled mobile robot and reinforce the concepts of kinematics for a differential drive mobile robot. The user experience is evaluated and system performance is validated through a user study with participants. The assessment shows that the proposed AR interface for interacting with the experimental setup is intuitive, easy to use, exciting, and recommendable.","PeriodicalId":296832,"journal":{"name":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interactive Learning of Mobile Robots Kinematics Using ARCore\",\"authors\":\"Abhidipta Mallik, V. Kapila\",\"doi\":\"10.1109/ICRAE50850.2020.9310865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed several educational innovations to provide effective and engaging classroom instruction with the integration of immersive interactions based on augmented reality and virtual reality (AR/VR). This paper outlines the development of an ARCore-based application (app) that can impart interactive experiences for hands-on learning in engineering laboratories. The ARCore technology enables a smartphone to sense its environment and detect horizontal and vertical surfaces, thus allowing the smartphone to estimate any position in its workspace. In this mobile app, with touch-based interaction and AR feedback, the user can interact with a wheeled mobile robot and reinforce the concepts of kinematics for a differential drive mobile robot. The user experience is evaluated and system performance is validated through a user study with participants. The assessment shows that the proposed AR interface for interacting with the experimental setup is intuitive, easy to use, exciting, and recommendable.\",\"PeriodicalId\":296832,\"journal\":{\"name\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAE50850.2020.9310865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE50850.2020.9310865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来出现了一些教育创新,通过基于增强现实和虚拟现实(AR/VR)的沉浸式互动,提供有效和引人入胜的课堂教学。本文概述了一个基于arcore的应用程序(app)的开发,该应用程序可以为工程实验室的实践学习提供交互式体验。ARCore技术使智能手机能够感知其环境并检测水平和垂直表面,从而使智能手机能够估计其工作空间中的任何位置。在这个移动应用程序中,通过基于触摸的交互和AR反馈,用户可以与轮式移动机器人进行交互,并加强差动驱动移动机器人的运动学概念。通过参与者的用户研究,评估用户体验并验证系统性能。评估表明,所提出的与实验装置交互的AR界面直观,易于使用,令人兴奋,值得推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Learning of Mobile Robots Kinematics Using ARCore
Recent years have witnessed several educational innovations to provide effective and engaging classroom instruction with the integration of immersive interactions based on augmented reality and virtual reality (AR/VR). This paper outlines the development of an ARCore-based application (app) that can impart interactive experiences for hands-on learning in engineering laboratories. The ARCore technology enables a smartphone to sense its environment and detect horizontal and vertical surfaces, thus allowing the smartphone to estimate any position in its workspace. In this mobile app, with touch-based interaction and AR feedback, the user can interact with a wheeled mobile robot and reinforce the concepts of kinematics for a differential drive mobile robot. The user experience is evaluated and system performance is validated through a user study with participants. The assessment shows that the proposed AR interface for interacting with the experimental setup is intuitive, easy to use, exciting, and recommendable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信