交通数据不确定性的大数据处理框架

Jie Yang, Jun Ma
{"title":"交通数据不确定性的大数据处理框架","authors":"Jie Yang, Jun Ma","doi":"10.1109/FUZZ-IEEE.2015.7337843","DOIUrl":null,"url":null,"abstract":"Transportation infrastructure takes a primary role in urban development planning. To better facilitate or understand the infrastructure status and demands, a huge amount of transportation data such as traffic flow counts has been collected from numerous transportation monitoring systems. Making full use of harvested data samples to discover important patterns has become an increasingly appealing research topic, in which a sophisticated and uncertainty-processing framework is required. In this paper, a big-data processing framework is introduced to analyse the transportation data, particularly taking the classification problem of the parking occupation status as an illustrative example. Three modules are implemented to crawl the raw records, generate high-level features, and apply the machine learning algorithm for classification. In addition, the fuzzification algorithm is also introduced to quantify the key attributes of the data, which helps in removing the data redundancy and inconsistency. The proposed framework then is evaluated using a real-world dataset collected from twelve car parks in a university. Simulation results show that the proposed framework performs well with a convincing classification accuracy.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A big-data processing framework for uncertainties in transportation data\",\"authors\":\"Jie Yang, Jun Ma\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transportation infrastructure takes a primary role in urban development planning. To better facilitate or understand the infrastructure status and demands, a huge amount of transportation data such as traffic flow counts has been collected from numerous transportation monitoring systems. Making full use of harvested data samples to discover important patterns has become an increasingly appealing research topic, in which a sophisticated and uncertainty-processing framework is required. In this paper, a big-data processing framework is introduced to analyse the transportation data, particularly taking the classification problem of the parking occupation status as an illustrative example. Three modules are implemented to crawl the raw records, generate high-level features, and apply the machine learning algorithm for classification. In addition, the fuzzification algorithm is also introduced to quantify the key attributes of the data, which helps in removing the data redundancy and inconsistency. The proposed framework then is evaluated using a real-world dataset collected from twelve car parks in a university. Simulation results show that the proposed framework performs well with a convincing classification accuracy.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

交通基础设施在城市发展规划中占有重要地位。为了更好地促进或了解基础设施的状况和需求,从众多的交通监控系统中收集了大量的交通数据,如交通流量计数。充分利用采集的数据样本来发现重要的模式已经成为一个越来越有吸引力的研究课题,其中需要一个复杂的不确定性处理框架。本文引入大数据处理框架对交通数据进行分析,并以车位占用状况分类问题为例进行说明。实现了三个模块来抓取原始记录,生成高级特征,并应用机器学习算法进行分类。此外,引入模糊化算法对数据的关键属性进行量化,有助于消除数据的冗余和不一致。然后,使用从一所大学的十二个停车场收集的真实数据集对提议的框架进行评估。仿真结果表明,该框架具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A big-data processing framework for uncertainties in transportation data
Transportation infrastructure takes a primary role in urban development planning. To better facilitate or understand the infrastructure status and demands, a huge amount of transportation data such as traffic flow counts has been collected from numerous transportation monitoring systems. Making full use of harvested data samples to discover important patterns has become an increasingly appealing research topic, in which a sophisticated and uncertainty-processing framework is required. In this paper, a big-data processing framework is introduced to analyse the transportation data, particularly taking the classification problem of the parking occupation status as an illustrative example. Three modules are implemented to crawl the raw records, generate high-level features, and apply the machine learning algorithm for classification. In addition, the fuzzification algorithm is also introduced to quantify the key attributes of the data, which helps in removing the data redundancy and inconsistency. The proposed framework then is evaluated using a real-world dataset collected from twelve car parks in a university. Simulation results show that the proposed framework performs well with a convincing classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信