形状记忆合金线致动拟人手指的力控制

M. Hulea
{"title":"形状记忆合金线致动拟人手指的力控制","authors":"M. Hulea","doi":"10.7763/IJMO.2021.V11.778","DOIUrl":null,"url":null,"abstract":"High accuracy in modelling the behavior of human hand and fingers is obtained using control devices of high biological plausibility. Such devices are typically based on neural networks and are able to control in parallel multiple artificial muscles. This paper presents the structure of an electronic spiking neural network that was implemented to control the force of two opposing fingers of an anthropomorphic hand. In order to increase the level of bio-inspiration, the artificial muscles are implemented using shape memory alloy wires which actuates by contraction as the natural muscles. Moreover, the contraction force of the SMA actuators is directly related to the spiking frequency that is generated by the artificial neurons. The results show that using few excitatory and inhibitory neurons the neural network is able to set and regulate the contraction force of the SMA actuators.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Force Control for Anthropomorphic Fingers Actuated by Shape Memory Alloy Wires\",\"authors\":\"M. Hulea\",\"doi\":\"10.7763/IJMO.2021.V11.778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High accuracy in modelling the behavior of human hand and fingers is obtained using control devices of high biological plausibility. Such devices are typically based on neural networks and are able to control in parallel multiple artificial muscles. This paper presents the structure of an electronic spiking neural network that was implemented to control the force of two opposing fingers of an anthropomorphic hand. In order to increase the level of bio-inspiration, the artificial muscles are implemented using shape memory alloy wires which actuates by contraction as the natural muscles. Moreover, the contraction force of the SMA actuators is directly related to the spiking frequency that is generated by the artificial neurons. The results show that using few excitatory and inhibitory neurons the neural network is able to set and regulate the contraction force of the SMA actuators.\",\"PeriodicalId\":134487,\"journal\":{\"name\":\"International Journal of Modeling and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7763/IJMO.2021.V11.778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJMO.2021.V11.778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用高生物可信度的控制装置,可以获得高精度的手部和手指行为建模。这种装置通常基于神经网络,能够并行控制多个人造肌肉。本文提出了一种电子脉冲神经网络的结构,用于控制拟人化手的两个相对手指的力。为了提高仿生水平,人造肌肉采用形状记忆合金丝,与自然肌肉一样通过收缩来驱动。此外,SMA致动器的收缩力与人工神经元产生的峰值频率直接相关。结果表明,使用少量的兴奋性和抑制性神经元,神经网络就能设定和调节SMA致动器的收缩力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force Control for Anthropomorphic Fingers Actuated by Shape Memory Alloy Wires
High accuracy in modelling the behavior of human hand and fingers is obtained using control devices of high biological plausibility. Such devices are typically based on neural networks and are able to control in parallel multiple artificial muscles. This paper presents the structure of an electronic spiking neural network that was implemented to control the force of two opposing fingers of an anthropomorphic hand. In order to increase the level of bio-inspiration, the artificial muscles are implemented using shape memory alloy wires which actuates by contraction as the natural muscles. Moreover, the contraction force of the SMA actuators is directly related to the spiking frequency that is generated by the artificial neurons. The results show that using few excitatory and inhibitory neurons the neural network is able to set and regulate the contraction force of the SMA actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信