旋转能量回收装置内混合的CFD模拟

Kai Liu, Lixing Zheng
{"title":"旋转能量回收装置内混合的CFD模拟","authors":"Kai Liu, Lixing Zheng","doi":"10.9734/BPI/NAER/V6/2659F","DOIUrl":null,"url":null,"abstract":"The rotary energy recovery device (RERD) is widely equipped in desalination to reduce the system energy consumption. In this study, the fluid dynamics and mixing performance of a typical structure RERD and a visualization apparatus of a RERD (V-RERD), had been compared by simulation. The effects of rotating components on fluid dynamics and mixing had been researched. Simulation results indicated that a swirling flow can be observed from flow fields in the device duct. In the RERD case, the swirling flow changed its rotating direction in the center of the duct, while in the V-RERD case its rotating direction unchanged. Then, a swirling number Sn was applied to characterize the degree of swirl intensity, and its formation mechanism in RERD had been discussed. In addition, the Q criterion was adopted to visualize the three-dimensional flow structures and identify vortex structures in the duct. The evolution of vortices in the working process had been investigated. It was found that vortices significantly affected the mixing performance, and the detached vortex could lead to high turbulence and mixing in the duct. Suppressing the vortex shedding may reduce the flow turbulence and gain a lower volumetric mixing rate.","PeriodicalId":188312,"journal":{"name":"New Approaches in Engineering Research Vol. 6","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Simulation of Mixing in Rotary Energy Recovery Device\",\"authors\":\"Kai Liu, Lixing Zheng\",\"doi\":\"10.9734/BPI/NAER/V6/2659F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotary energy recovery device (RERD) is widely equipped in desalination to reduce the system energy consumption. In this study, the fluid dynamics and mixing performance of a typical structure RERD and a visualization apparatus of a RERD (V-RERD), had been compared by simulation. The effects of rotating components on fluid dynamics and mixing had been researched. Simulation results indicated that a swirling flow can be observed from flow fields in the device duct. In the RERD case, the swirling flow changed its rotating direction in the center of the duct, while in the V-RERD case its rotating direction unchanged. Then, a swirling number Sn was applied to characterize the degree of swirl intensity, and its formation mechanism in RERD had been discussed. In addition, the Q criterion was adopted to visualize the three-dimensional flow structures and identify vortex structures in the duct. The evolution of vortices in the working process had been investigated. It was found that vortices significantly affected the mixing performance, and the detached vortex could lead to high turbulence and mixing in the duct. Suppressing the vortex shedding may reduce the flow turbulence and gain a lower volumetric mixing rate.\",\"PeriodicalId\":188312,\"journal\":{\"name\":\"New Approaches in Engineering Research Vol. 6\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Approaches in Engineering Research Vol. 6\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/BPI/NAER/V6/2659F\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Approaches in Engineering Research Vol. 6","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/BPI/NAER/V6/2659F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旋转能量回收装置(rrd)在海水淡化中广泛应用,以降低系统能耗。本研究通过仿真比较了典型结构rrd和可视化装置(v - rrd)的流体力学和混合性能。研究了旋转部件对流体力学和混合的影响。仿真结果表明,装置导管内的流场存在旋流现象。在rrd情况下,旋转流在管道中心改变了其旋转方向,而在v - rrd情况下,其旋转方向不变。然后用旋流数Sn来表征旋流强度,并对其在rrd中的形成机理进行了探讨。此外,采用Q准则对管道内的三维流动结构进行可视化,并对管道内的涡结构进行识别。研究了涡旋在工作过程中的演化过程。研究发现,涡流对混合性能有显著影响,分离涡流会导致管道内的高湍流度和混合。抑制旋涡脱落可以减少流动湍流,获得较低的体积混合率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Simulation of Mixing in Rotary Energy Recovery Device
The rotary energy recovery device (RERD) is widely equipped in desalination to reduce the system energy consumption. In this study, the fluid dynamics and mixing performance of a typical structure RERD and a visualization apparatus of a RERD (V-RERD), had been compared by simulation. The effects of rotating components on fluid dynamics and mixing had been researched. Simulation results indicated that a swirling flow can be observed from flow fields in the device duct. In the RERD case, the swirling flow changed its rotating direction in the center of the duct, while in the V-RERD case its rotating direction unchanged. Then, a swirling number Sn was applied to characterize the degree of swirl intensity, and its formation mechanism in RERD had been discussed. In addition, the Q criterion was adopted to visualize the three-dimensional flow structures and identify vortex structures in the duct. The evolution of vortices in the working process had been investigated. It was found that vortices significantly affected the mixing performance, and the detached vortex could lead to high turbulence and mixing in the duct. Suppressing the vortex shedding may reduce the flow turbulence and gain a lower volumetric mixing rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信