基于Apriori的项集间距离关联规则挖掘算法

P. Sarma, A. Mahanta
{"title":"基于Apriori的项集间距离关联规则挖掘算法","authors":"P. Sarma, A. Mahanta","doi":"10.5121/IJDKP.2013.3605","DOIUrl":null,"url":null,"abstract":"Association rules discovered from transaction databases can be large in number. Reduction of association rules is an issue in recent times. Conventionally by varying support and confidence number of rules can be increased and decreased. By combining additional constraint with support number of frequent itemsets can be reduced and it leads to generation of less number of rules. Average inter itemset distance(IID) or Spread, which is the intervening separation of itemsets in the transactions has been used as a measure of interestingness for association rules with a view to reduce the number of association rules. In this paper by using average Inter Itemset Distance a complete algorithm based on the apriori is designed and implemented with a view to reduce the number of frequent itemsets and the association rules and also to find the distribution pattern of the association rules in terms of the number of transactions of non occurrences of the frequent itemsets. Further the apriori algorithm is also implemented and results are compared. The theoretical concepts related to inter itemset distance are also put forward.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Apriori Based Algorithm to Mine Association Rules with Inter Itemset Distance\",\"authors\":\"P. Sarma, A. Mahanta\",\"doi\":\"10.5121/IJDKP.2013.3605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rules discovered from transaction databases can be large in number. Reduction of association rules is an issue in recent times. Conventionally by varying support and confidence number of rules can be increased and decreased. By combining additional constraint with support number of frequent itemsets can be reduced and it leads to generation of less number of rules. Average inter itemset distance(IID) or Spread, which is the intervening separation of itemsets in the transactions has been used as a measure of interestingness for association rules with a view to reduce the number of association rules. In this paper by using average Inter Itemset Distance a complete algorithm based on the apriori is designed and implemented with a view to reduce the number of frequent itemsets and the association rules and also to find the distribution pattern of the association rules in terms of the number of transactions of non occurrences of the frequent itemsets. Further the apriori algorithm is also implemented and results are compared. The theoretical concepts related to inter itemset distance are also put forward.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2013.3605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2013.3605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从事务数据库中发现的关联规则数量可能很大。关联规则的约简是近年来的一个问题。通常,通过改变支持度和置信度,规则的数量可以增加或减少。通过将附加约束与支持频繁项集相结合,可以减少频繁项集的数量,从而减少生成的规则数量。平均项目集间距离(IID)或扩展,即事务中项目集之间的间隔,被用来衡量关联规则的兴趣度,以减少关联规则的数量。本文利用平均项目集间距离设计并实现了一种基于先验的完整算法,目的是减少频繁项目集和关联规则的数量,并根据频繁项目集不出现的事务数找到关联规则的分布模式。在此基础上对先验算法进行了实现,并对结果进行了比较。提出了项目集间距离的相关理论概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Apriori Based Algorithm to Mine Association Rules with Inter Itemset Distance
Association rules discovered from transaction databases can be large in number. Reduction of association rules is an issue in recent times. Conventionally by varying support and confidence number of rules can be increased and decreased. By combining additional constraint with support number of frequent itemsets can be reduced and it leads to generation of less number of rules. Average inter itemset distance(IID) or Spread, which is the intervening separation of itemsets in the transactions has been used as a measure of interestingness for association rules with a view to reduce the number of association rules. In this paper by using average Inter Itemset Distance a complete algorithm based on the apriori is designed and implemented with a view to reduce the number of frequent itemsets and the association rules and also to find the distribution pattern of the association rules in terms of the number of transactions of non occurrences of the frequent itemsets. Further the apriori algorithm is also implemented and results are compared. The theoretical concepts related to inter itemset distance are also put forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信