超临界水气化处理实验室有机废物

Asim Aslam, F. Twaiq
{"title":"超临界水气化处理实验室有机废物","authors":"Asim Aslam, F. Twaiq","doi":"10.15282/jceib.v4i1.3880","DOIUrl":null,"url":null,"abstract":"The thermodynamics of supercritical water gasification (SCWG) was studied in order to determine its potential for treatment of laboratory liquid organic waste. A thermodynamic model based on the minimization of Gibbs energy was developed in Aspen Plus software that simulated the SCWG of liquid lab organic wastes on an ash free basis. The feed stream contained a mixture of aliphatic (hexane), oxygenated (acetone, ethyl acetate,ethyl ether, isopropyl alcohol and methanol), aromatic (toluene and xylene) and chlorinated hydrocarbons (chloroform and dichloromethane). The showed that a pressure of 25 MPa, low organic material concentration of 5-10% in the feed and temperatures over 600oC, SCWG resulted in hydrogen rich syngas aith a trace amount of HCI in the liquid effluent. High conversion rates were obtained for oxygenated hydrocarbons having destruction and removal efficiency (DRE) greater than 99.99% with the rest of the compound having a 100% DRE. The composition of the gaseous stream was found to be such that the gas could be released safely to the atmosphere or be stored at high pressure. The study established a proof of concept that there is potential for laboratories to use this method to deal with organic lab wastes with the SCWG process effluent that is environmental friendly.","PeriodicalId":235976,"journal":{"name":"Journal of Chemical Engineering and Industrial Biotechnology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SUPERCRITICAL WATER GASIFICATION AS A TREATMENT FOR LABORATORY ORGANIC WASTE\",\"authors\":\"Asim Aslam, F. Twaiq\",\"doi\":\"10.15282/jceib.v4i1.3880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermodynamics of supercritical water gasification (SCWG) was studied in order to determine its potential for treatment of laboratory liquid organic waste. A thermodynamic model based on the minimization of Gibbs energy was developed in Aspen Plus software that simulated the SCWG of liquid lab organic wastes on an ash free basis. The feed stream contained a mixture of aliphatic (hexane), oxygenated (acetone, ethyl acetate,ethyl ether, isopropyl alcohol and methanol), aromatic (toluene and xylene) and chlorinated hydrocarbons (chloroform and dichloromethane). The showed that a pressure of 25 MPa, low organic material concentration of 5-10% in the feed and temperatures over 600oC, SCWG resulted in hydrogen rich syngas aith a trace amount of HCI in the liquid effluent. High conversion rates were obtained for oxygenated hydrocarbons having destruction and removal efficiency (DRE) greater than 99.99% with the rest of the compound having a 100% DRE. The composition of the gaseous stream was found to be such that the gas could be released safely to the atmosphere or be stored at high pressure. The study established a proof of concept that there is potential for laboratories to use this method to deal with organic lab wastes with the SCWG process effluent that is environmental friendly.\",\"PeriodicalId\":235976,\"journal\":{\"name\":\"Journal of Chemical Engineering and Industrial Biotechnology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Engineering and Industrial Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jceib.v4i1.3880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Engineering and Industrial Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jceib.v4i1.3880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了超临界水气化(SCWG)的热力学,以确定其处理实验室液体有机废物的潜力。在Aspen Plus软件中建立了基于吉布斯能量最小化的热力学模型,模拟了实验室液体有机废物在无灰分的基础上的SCWG。进料流中含有脂肪烃(己烷)、氧合烃(丙酮、乙酸乙酯、乙醚、异丙醇和甲醇)、芳香烃(甲苯和二甲苯)和氯化烃(氯仿和二氯甲烷)的混合物。结果表明,在25 MPa的压力、5 ~ 10%的原料浓度和600℃以上的温度条件下,SCWG可制得富氢合成气,出水中含有微量HCI。结果表明,含氧烃的转化率高,其破坏和去除效率(DRE)大于99.99%,其余化合物的DRE为100%。人们发现,这种气体的组成可以安全地释放到大气中,或者在高压下储存起来。该研究建立了一个概念证明,即实验室有可能使用这种方法处理有机实验室废物,并使用环境友好的SCWG工艺废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUPERCRITICAL WATER GASIFICATION AS A TREATMENT FOR LABORATORY ORGANIC WASTE
The thermodynamics of supercritical water gasification (SCWG) was studied in order to determine its potential for treatment of laboratory liquid organic waste. A thermodynamic model based on the minimization of Gibbs energy was developed in Aspen Plus software that simulated the SCWG of liquid lab organic wastes on an ash free basis. The feed stream contained a mixture of aliphatic (hexane), oxygenated (acetone, ethyl acetate,ethyl ether, isopropyl alcohol and methanol), aromatic (toluene and xylene) and chlorinated hydrocarbons (chloroform and dichloromethane). The showed that a pressure of 25 MPa, low organic material concentration of 5-10% in the feed and temperatures over 600oC, SCWG resulted in hydrogen rich syngas aith a trace amount of HCI in the liquid effluent. High conversion rates were obtained for oxygenated hydrocarbons having destruction and removal efficiency (DRE) greater than 99.99% with the rest of the compound having a 100% DRE. The composition of the gaseous stream was found to be such that the gas could be released safely to the atmosphere or be stored at high pressure. The study established a proof of concept that there is potential for laboratories to use this method to deal with organic lab wastes with the SCWG process effluent that is environmental friendly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信