使用加密货币价格预测区块链的全球计算能力

Guangcheng Li, Qinglin Zhao, Mengfei Song, Daidong Du, Jianwen Yuan, Xuanhui Chen, Hong Liang
{"title":"使用加密货币价格预测区块链的全球计算能力","authors":"Guangcheng Li, Qinglin Zhao, Mengfei Song, Daidong Du, Jianwen Yuan, Xuanhui Chen, Hong Liang","doi":"10.1109/ICMLC48188.2019.8949188","DOIUrl":null,"url":null,"abstract":"Blockchain is a disruptive technology that enables disparate users to share their information in blocks trustworthily without a centralized entity. One fundamental problem is how to stable the block interval. To address this problem, our method is: 1. predict the computing power (i.e., hashrate) of a blockchain system by the cryptocurrency price; 2. stable the interval according to the predicted power. This paper focuses on the prediction of the global computing power. In our prediction, we adopt a LSTM-based regression algorithm to handle the hysteresis of computing power changes in response to the price changes. Taking the Bitcoin system as an example, we run extensive experiments that verify that our prediction algorithm is very accurate.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting Global Computing Power of Blockchain Using Cryptocurrency Prices\",\"authors\":\"Guangcheng Li, Qinglin Zhao, Mengfei Song, Daidong Du, Jianwen Yuan, Xuanhui Chen, Hong Liang\",\"doi\":\"10.1109/ICMLC48188.2019.8949188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain is a disruptive technology that enables disparate users to share their information in blocks trustworthily without a centralized entity. One fundamental problem is how to stable the block interval. To address this problem, our method is: 1. predict the computing power (i.e., hashrate) of a blockchain system by the cryptocurrency price; 2. stable the interval according to the predicted power. This paper focuses on the prediction of the global computing power. In our prediction, we adopt a LSTM-based regression algorithm to handle the hysteresis of computing power changes in response to the price changes. Taking the Bitcoin system as an example, we run extensive experiments that verify that our prediction algorithm is very accurate.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

区块链是一种颠覆性技术,它使不同的用户能够在没有集中实体的情况下可信地共享区块中的信息。一个基本问题是如何稳定块间隔。为了解决这个问题,我们的方法是:1。通过加密货币价格预测区块链系统的计算能力(即哈希率);2. 根据预测功率稳定间隔。本文主要研究全球计算能力的预测问题。在我们的预测中,我们采用基于lstm的回归算法来处理计算能力随价格变化而变化的滞后性。以比特币系统为例,我们进行了大量的实验,验证了我们的预测算法非常准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Global Computing Power of Blockchain Using Cryptocurrency Prices
Blockchain is a disruptive technology that enables disparate users to share their information in blocks trustworthily without a centralized entity. One fundamental problem is how to stable the block interval. To address this problem, our method is: 1. predict the computing power (i.e., hashrate) of a blockchain system by the cryptocurrency price; 2. stable the interval according to the predicted power. This paper focuses on the prediction of the global computing power. In our prediction, we adopt a LSTM-based regression algorithm to handle the hysteresis of computing power changes in response to the price changes. Taking the Bitcoin system as an example, we run extensive experiments that verify that our prediction algorithm is very accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信