哥德巴赫分区与尖形范数

S. Davis
{"title":"哥德巴赫分区与尖形范数","authors":"S. Davis","doi":"10.33993/jnaat481-1152","DOIUrl":null,"url":null,"abstract":"An integral formula for the Goldbach partitions requires uniform convergence of a complex exponential sum. The dependence of the coefficients of the series is found to be bounded by that of cusp forms. Norms may be defined for these forms on a fundamental domain of a modular group. The relation with the integral formula is found to be sufficient to establish the consistency of the interchange of the integral and the sum, which must remain valid as the even integer $N$ tends to infinity.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goldbach partitions and norms of cusp forms\",\"authors\":\"S. Davis\",\"doi\":\"10.33993/jnaat481-1152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integral formula for the Goldbach partitions requires uniform convergence of a complex exponential sum. The dependence of the coefficients of the series is found to be bounded by that of cusp forms. Norms may be defined for these forms on a fundamental domain of a modular group. The relation with the integral formula is found to be sufficient to establish the consistency of the interchange of the integral and the sum, which must remain valid as the even integer $N$ tends to infinity.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat481-1152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat481-1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

哥德巴赫分区的积分公式要求复指数和一致收敛。发现该级数的系数的依赖关系是由尖形式的依赖关系所限定的。可以在模群的基本域上为这些形式定义规范。通过与积分公式的关系,证明了积分与和交换的一致性,当偶数N趋于无穷时,积分与和交换的一致性仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Goldbach partitions and norms of cusp forms
An integral formula for the Goldbach partitions requires uniform convergence of a complex exponential sum. The dependence of the coefficients of the series is found to be bounded by that of cusp forms. Norms may be defined for these forms on a fundamental domain of a modular group. The relation with the integral formula is found to be sufficient to establish the consistency of the interchange of the integral and the sum, which must remain valid as the even integer $N$ tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信