最短唯一子串的最大数目的紧边界

Takuya Mieno, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"最短唯一子串的最大数目的紧边界","authors":"Takuya Mieno, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2017.24","DOIUrl":null,"url":null,"abstract":"A substring Q of a string S is called a shortest unique substring (SUS) for interval [s,t] in S, if Q occurs exactly once in S, this occurrence of Q contains interval [s,t], and every substring of S which contains interval [s,t] and is shorter than Q occurs at least twice in S. The SUS problem is, given a string S, to preprocess S so that for any subsequent query interval [s,t] all the SUSs for interval [s,t] can be answered quickly. When s = t, we call the SUSs for [s, t] as point SUSs, and when s <= t, we call the SUSs for [s, t] as interval SUSs. There exist optimal O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and interval SUSs, where n is the length of S and k is the number of outputs for a given query. In this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely, we show that the number of intervals in S that correspond to point SUSs for all query positions in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider the maximum number of intervals in S that correspond to interval SUSs for all query intervals in S.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tight Bounds on the Maximum Number of Shortest Unique Substrings\",\"authors\":\"Takuya Mieno, Shunsuke Inenaga, H. Bannai, M. Takeda\",\"doi\":\"10.4230/LIPIcs.CPM.2017.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A substring Q of a string S is called a shortest unique substring (SUS) for interval [s,t] in S, if Q occurs exactly once in S, this occurrence of Q contains interval [s,t], and every substring of S which contains interval [s,t] and is shorter than Q occurs at least twice in S. The SUS problem is, given a string S, to preprocess S so that for any subsequent query interval [s,t] all the SUSs for interval [s,t] can be answered quickly. When s = t, we call the SUSs for [s, t] as point SUSs, and when s <= t, we call the SUSs for [s, t] as interval SUSs. There exist optimal O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and interval SUSs, where n is the length of S and k is the number of outputs for a given query. In this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely, we show that the number of intervals in S that correspond to point SUSs for all query positions in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider the maximum number of intervals in S that correspond to interval SUSs for all query intervals in S.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

子字符串问的年代被称为最短独特的子串(SUS)间隔(S, t)的年代,如果问年代出现且仅出现一次,该发生的Q包含间隔(S, t), S的每个子字符串包含间隔(S, t)和小于Q至少两次发生在美国SUS的问题是,给定一个字符串,以预处理年代,这样对于任何后续的查询时间间隔(S, t)的所有侦测间隔(S, t)可以快速回答。当s = t时,我们称[s, t]的系统为点系统,当s <= t时,我们称[s, t]的系统为区间系统。存在最优的O(n)时间预处理方案,在最优的O(k)时间内回答点和区间的查询,其中n是S的长度,k是给定查询的输出数。在本文中,我们揭示了SUS问题的结构组合性质:即,我们证明了S中所有查询位置对应于点SUSs的区间数小于1.5n,并且证明了这是一个匹配的上界和下界。此外,我们还考虑S中所有查询区间对应于区间SUSs的最大区间数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Bounds on the Maximum Number of Shortest Unique Substrings
A substring Q of a string S is called a shortest unique substring (SUS) for interval [s,t] in S, if Q occurs exactly once in S, this occurrence of Q contains interval [s,t], and every substring of S which contains interval [s,t] and is shorter than Q occurs at least twice in S. The SUS problem is, given a string S, to preprocess S so that for any subsequent query interval [s,t] all the SUSs for interval [s,t] can be answered quickly. When s = t, we call the SUSs for [s, t] as point SUSs, and when s <= t, we call the SUSs for [s, t] as interval SUSs. There exist optimal O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and interval SUSs, where n is the length of S and k is the number of outputs for a given query. In this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely, we show that the number of intervals in S that correspond to point SUSs for all query positions in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider the maximum number of intervals in S that correspond to interval SUSs for all query intervals in S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信