整数最大公约数计算的下界

Y. Mansour, B. Schieber, Prasoon Tiwari
{"title":"整数最大公约数计算的下界","authors":"Y. Mansour, B. Schieber, Prasoon Tiwari","doi":"10.1145/103516.103522","DOIUrl":null,"url":null,"abstract":"An Omega (log log n) lower bound is proved on the depth of any computation tree with operations (+, -, /, mod, <or=) that computes the greatest common divisor (GCD) of all pairs of n-bit integers. A novel technique for handling the truncation operation is implicit in the proof. Also proved is a Theta (n) bound on the depth of any algebraic computation trees with operations (+, -, *, /, <or=) (where \"/\" stands for exact division) that solve many simple problems, e.g. testing if an n-bit integer is odd or computing the GCD of two n-bit integers.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Lower bounds for integer greatest common divisor computations\",\"authors\":\"Y. Mansour, B. Schieber, Prasoon Tiwari\",\"doi\":\"10.1145/103516.103522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Omega (log log n) lower bound is proved on the depth of any computation tree with operations (+, -, /, mod, <or=) that computes the greatest common divisor (GCD) of all pairs of n-bit integers. A novel technique for handling the truncation operation is implicit in the proof. Also proved is a Theta (n) bound on the depth of any algebraic computation trees with operations (+, -, *, /, <or=) (where \\\"/\\\" stands for exact division) that solve many simple problems, e.g. testing if an n-bit integer is odd or computing the GCD of two n-bit integers.<<ETX>>\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/103516.103522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/103516.103522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在任意运算(+,-,/,mod, >)的计算树的深度上证明了(log log n)下界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for integer greatest common divisor computations
An Omega (log log n) lower bound is proved on the depth of any computation tree with operations (+, -, /, mod, >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信