Instagram标签上的主题建模:自动图像注释的另一种方法?

A. Argyrou, Stamatios Giannoulakis, N. Tsapatsoulis
{"title":"Instagram标签上的主题建模:自动图像注释的另一种方法?","authors":"A. Argyrou, Stamatios Giannoulakis, N. Tsapatsoulis","doi":"10.1109/SMAP.2018.8501887","DOIUrl":null,"url":null,"abstract":"Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods.","PeriodicalId":291905,"journal":{"name":"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation?\",\"authors\":\"A. Argyrou, Stamatios Giannoulakis, N. Tsapatsoulis\",\"doi\":\"10.1109/SMAP.2018.8501887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods.\",\"PeriodicalId\":291905,\"journal\":{\"name\":\"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMAP.2018.8501887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2018.8501887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

自动图像标注(AIA)是在没有人工干预的情况下为数字图像分配标签的过程。现代图像自动标注方法大多是基于实例学习范式的。在这些方法中,构建训练样例,即图像对和相关标签,是第一个关键步骤。我们在之前的研究中已经表明,社交媒体上,特别是Instagram上的图片标签为AIA创建训练集提供了一个可达的来源。然而,我们得出的结论是,只有20%的Instagram标签描述了它们所伴随的图像的实际内容,因此,需要应用一系列过滤步骤来识别合适的标签。在本文中,我们在Instagram标签上应用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的主题建模,以预测相关图像的主题。由于主题是由一组相关术语组成的,因此通过本文提出的方法对Instagram图像的视觉主题进行识别,可以为训练AIA方法提供一组合理的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation?
Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信