sasaki人和质量项的几何

V. Nair
{"title":"sasaki人和质量项的几何","authors":"V. Nair","doi":"10.1142/9789811210679_0019","DOIUrl":null,"url":null,"abstract":"A gauge-invariant mass term for nonabelian gauge fields in two dimensions can be expressed as the Wess–Zumino–Witten (WZW) action. Hard thermal loops in the gauge theory in four dimensions at finite temperatures generate a screening mass for some components of the gauge field. This can be expressed in terms of the WZW action using the bundle of complex structures (for Euclidean signature) or the bundle of lightcones over Minkowski space. We show that a dynamically generated mass term in three dimensions can be put within the same general framework using the bundle of Sasakian structures.","PeriodicalId":437053,"journal":{"name":"Roman Jackiw","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sasakians and the Geometry of a Mass Term\",\"authors\":\"V. Nair\",\"doi\":\"10.1142/9789811210679_0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gauge-invariant mass term for nonabelian gauge fields in two dimensions can be expressed as the Wess–Zumino–Witten (WZW) action. Hard thermal loops in the gauge theory in four dimensions at finite temperatures generate a screening mass for some components of the gauge field. This can be expressed in terms of the WZW action using the bundle of complex structures (for Euclidean signature) or the bundle of lightcones over Minkowski space. We show that a dynamically generated mass term in three dimensions can be put within the same general framework using the bundle of Sasakian structures.\",\"PeriodicalId\":437053,\"journal\":{\"name\":\"Roman Jackiw\",\"volume\":\"289 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Roman Jackiw\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811210679_0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Roman Jackiw","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811210679_0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维非abel规范场的标准不变质量项可以表示为Wess-Zumino-Witten (WZW)作用。在有限温度下,四维规范理论中的硬热环路对规范场的某些分量产生屏蔽质量。这可以用复结构束(欧几里得签名)或闵可夫斯基空间上的光锥束的WZW作用来表示。我们证明了在三维空间中动态生成的质量项可以用Sasakian结构束放在相同的一般框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sasakians and the Geometry of a Mass Term
A gauge-invariant mass term for nonabelian gauge fields in two dimensions can be expressed as the Wess–Zumino–Witten (WZW) action. Hard thermal loops in the gauge theory in four dimensions at finite temperatures generate a screening mass for some components of the gauge field. This can be expressed in terms of the WZW action using the bundle of complex structures (for Euclidean signature) or the bundle of lightcones over Minkowski space. We show that a dynamically generated mass term in three dimensions can be put within the same general framework using the bundle of Sasakian structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信