为ssd生成真实的磨损分布

Ziyang Jiao, B. Kim
{"title":"为ssd生成真实的磨损分布","authors":"Ziyang Jiao, B. Kim","doi":"10.1145/3538643.3539757","DOIUrl":null,"url":null,"abstract":"We present FF-SSD, a machine learning-based SSD aging framework that generates representative future wear-out states. FF-SSD is accurate (up to 99% similarity), efficient (accelerates simulation time by 2×), and modular (can be integrated with existing simulators and emulators).","PeriodicalId":159120,"journal":{"name":"Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating realistic wear distributions for SSDs\",\"authors\":\"Ziyang Jiao, B. Kim\",\"doi\":\"10.1145/3538643.3539757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present FF-SSD, a machine learning-based SSD aging framework that generates representative future wear-out states. FF-SSD is accurate (up to 99% similarity), efficient (accelerates simulation time by 2×), and modular (can be integrated with existing simulators and emulators).\",\"PeriodicalId\":159120,\"journal\":{\"name\":\"Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3538643.3539757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3538643.3539757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了FF-SSD,这是一种基于机器学习的SSD老化框架,可以生成具有代表性的未来磨损状态。FF-SSD精确(相似度高达99%)、高效(仿真时间加快2倍)、模块化(可与现有模拟器和仿真器集成)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating realistic wear distributions for SSDs
We present FF-SSD, a machine learning-based SSD aging framework that generates representative future wear-out states. FF-SSD is accurate (up to 99% similarity), efficient (accelerates simulation time by 2×), and modular (can be integrated with existing simulators and emulators).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信