Fatemeh Salehi Rizi, Jörg Schlötterer, M. Granitzer
{"title":"使用深度学习技术的最短路径距离逼近","authors":"Fatemeh Salehi Rizi, Jörg Schlötterer, M. Granitzer","doi":"10.1109/ASONAM.2018.8508763","DOIUrl":null,"url":null,"abstract":"Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving today's massive networks. Therefore, it is required to find approximation methods to enable scalable graph processing with a significant speedup. In this paper, we utilize vector embeddings learnt by deep learning techniques to approximate the shortest paths distances in large graphs. We show that a feedforward neural network fed with embeddings can approximate distances with relatively low distortion error. The suggested method is evaluated on the Facebook, BlogCatalog, Youtube and Flickr social networks.","PeriodicalId":135949,"journal":{"name":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Shortest Path Distance Approximation Using Deep Learning Techniques\",\"authors\":\"Fatemeh Salehi Rizi, Jörg Schlötterer, M. Granitzer\",\"doi\":\"10.1109/ASONAM.2018.8508763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving today's massive networks. Therefore, it is required to find approximation methods to enable scalable graph processing with a significant speedup. In this paper, we utilize vector embeddings learnt by deep learning techniques to approximate the shortest paths distances in large graphs. We show that a feedforward neural network fed with embeddings can approximate distances with relatively low distortion error. The suggested method is evaluated on the Facebook, BlogCatalog, Youtube and Flickr social networks.\",\"PeriodicalId\":135949,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2018.8508763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2018.8508763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shortest Path Distance Approximation Using Deep Learning Techniques
Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving today's massive networks. Therefore, it is required to find approximation methods to enable scalable graph processing with a significant speedup. In this paper, we utilize vector embeddings learnt by deep learning techniques to approximate the shortest paths distances in large graphs. We show that a feedforward neural network fed with embeddings can approximate distances with relatively low distortion error. The suggested method is evaluated on the Facebook, BlogCatalog, Youtube and Flickr social networks.