调制识别的深度体系结构

Nathan E. West, Tim O'Shea
{"title":"调制识别的深度体系结构","authors":"Nathan E. West, Tim O'Shea","doi":"10.1109/DySPAN.2017.7920754","DOIUrl":null,"url":null,"abstract":"We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"303","resultStr":"{\"title\":\"Deep architectures for modulation recognition\",\"authors\":\"Nathan E. West, Tim O'Shea\",\"doi\":\"10.1109/DySPAN.2017.7920754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"303\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 303

摘要

我们通过将深度神经网络应用于无线电调制识别任务来研究机器学习的最新进展。结果表明,比例调制识别不受网络深度的限制,进一步的工作应集中在改进学习同步和均衡。这些领域的进步可能来自为这些任务设计的新架构或通过新的训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep architectures for modulation recognition
We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信