{"title":"最优分区的排队和粘合(功能珍珠)","authors":"Shin-Cheng Mu, Yu-Hsi Chiang, Yu-Han Lyu","doi":"10.1145/2951913.2951923","DOIUrl":null,"url":null,"abstract":"The queueing-glueing algorithm is the nickname we give to an algorithmic pattern that provides amortised linear time solutions to a number of optimal list partition problems that have a peculiar property: at various moments we know that two of three candidate solutions could be optimal. The algorithm works by keeping a queue of lists, glueing them from one end, while chopping from the other end, hence the name. We give a formal derivation of the algorithm, and demonstrate it with several non-trivial examples.","PeriodicalId":336660,"journal":{"name":"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Queueing and glueing for optimal partitioning (functional pearl)\",\"authors\":\"Shin-Cheng Mu, Yu-Hsi Chiang, Yu-Han Lyu\",\"doi\":\"10.1145/2951913.2951923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The queueing-glueing algorithm is the nickname we give to an algorithmic pattern that provides amortised linear time solutions to a number of optimal list partition problems that have a peculiar property: at various moments we know that two of three candidate solutions could be optimal. The algorithm works by keeping a queue of lists, glueing them from one end, while chopping from the other end, hence the name. We give a formal derivation of the algorithm, and demonstrate it with several non-trivial examples.\",\"PeriodicalId\":336660,\"journal\":{\"name\":\"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2951913.2951923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2951913.2951923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Queueing and glueing for optimal partitioning (functional pearl)
The queueing-glueing algorithm is the nickname we give to an algorithmic pattern that provides amortised linear time solutions to a number of optimal list partition problems that have a peculiar property: at various moments we know that two of three candidate solutions could be optimal. The algorithm works by keeping a queue of lists, glueing them from one end, while chopping from the other end, hence the name. We give a formal derivation of the algorithm, and demonstrate it with several non-trivial examples.