基于BP神经网络的道路货物运输系统需求预测模型

Yun Wu, Shuai Wang, Yingying Zhang, Jiangzhou Zhang
{"title":"基于BP神经网络的道路货物运输系统需求预测模型","authors":"Yun Wu, Shuai Wang, Yingying Zhang, Jiangzhou Zhang","doi":"10.1109/ISCTIS51085.2021.00061","DOIUrl":null,"url":null,"abstract":"To address the prediction problem of road freight transport demand, this paper firstly establishes preliminary forecasting indicators, analyses them using grey relational analysis methods and predicts freight volumes by taking advantage of the non-linear mapping of BP neural networks. The prediction results are eventually compared with the exponential smoothing method and the GM(1,1) method. The study find that the GRA-BPNN-based prediction has ideal prediction results, with higher accuracy and more stable prediction.","PeriodicalId":403102,"journal":{"name":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BP neural network model for the demand forecasting of road freight transportation system\",\"authors\":\"Yun Wu, Shuai Wang, Yingying Zhang, Jiangzhou Zhang\",\"doi\":\"10.1109/ISCTIS51085.2021.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the prediction problem of road freight transport demand, this paper firstly establishes preliminary forecasting indicators, analyses them using grey relational analysis methods and predicts freight volumes by taking advantage of the non-linear mapping of BP neural networks. The prediction results are eventually compared with the exponential smoothing method and the GM(1,1) method. The study find that the GRA-BPNN-based prediction has ideal prediction results, with higher accuracy and more stable prediction.\",\"PeriodicalId\":403102,\"journal\":{\"name\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS51085.2021.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS51085.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对道路货物运输需求的预测问题,本文首先建立了初步的预测指标,利用灰色关联分析方法对其进行分析,并利用BP神经网络的非线性映射对货运量进行预测。最后将预测结果与指数平滑法和GM(1,1)方法进行了比较。研究发现,基于gra - bpnn的预测具有理想的预测效果,预测精度更高,预测更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BP neural network model for the demand forecasting of road freight transportation system
To address the prediction problem of road freight transport demand, this paper firstly establishes preliminary forecasting indicators, analyses them using grey relational analysis methods and predicts freight volumes by taking advantage of the non-linear mapping of BP neural networks. The prediction results are eventually compared with the exponential smoothing method and the GM(1,1) method. The study find that the GRA-BPNN-based prediction has ideal prediction results, with higher accuracy and more stable prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信