状态转换的量子查询复杂度

Troy Lee, R. Mittal, B. Reichardt, R. Spalek, M. Szegedy
{"title":"状态转换的量子查询复杂度","authors":"Troy Lee, R. Mittal, B. Reichardt, R. Spalek, M. Szegedy","doi":"10.1109/FOCS.2011.75","DOIUrl":null,"url":null,"abstract":"State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":"{\"title\":\"Quantum Query Complexity of State Conversion\",\"authors\":\"Troy Lee, R. Mittal, B. Reichardt, R. Spalek, M. Szegedy\",\"doi\":\"10.1109/FOCS.2011.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

摘要

状态转换将查询复杂性概括为通过对输入进行查询在两个依赖输入的量子态之间进行转换的问题。我们通过引入扩展舒尔积算子范数的自然信息论范数来表征这个问题的复杂性。两个状态系统之间转换的复杂性由它们之间的距离给出,由这个范数测量。在函数求值的特殊情况下,范数与一般的对手界密切相关,后者是一种半确定的程序,用于降低量子算法求值函数所需的输入查询的数量。因此,我们得到一般对手界表征任何函数的量子查询复杂性。这推广和简化了布尔输入和输出情况下相同结果的证明。同样在函数求值的情况下,我们表明我们的范数满足一个显著的组合性质,这意味着两个函数组合的量子查询复杂性最多是函数查询复杂性的乘积,直到一个常数。最后,我们的结果表明,即使对于一般的状态转换问题,离散时间和连续时间查询模型在有界误差设置中是等效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Query Complexity of State Conversion
State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信