游戏环境中神经进化与反向传播算法的分析、组合与集成

A. Darii, M. Moll, M. S. Nistor, S. Pickl, O. Novac, C. Novac, M. Gordan, C. Gordan
{"title":"游戏环境中神经进化与反向传播算法的分析、组合与集成","authors":"A. Darii, M. Moll, M. S. Nistor, S. Pickl, O. Novac, C. Novac, M. Gordan, C. Gordan","doi":"10.1109/ECAI58194.2023.10193958","DOIUrl":null,"url":null,"abstract":"This paper provides a method of combining Neu-roevolution with Backpropagation to achieve lower training times than Neuroevolution when training agents in a video game environment. The combination of these algorithms is reproduced by an alteration of the step of creating a new generation from the most capable agents with the creation of a new generation through the Backpropagation method using the preventively saved data of the most capable agent from the environment. Thus, for the new generation, a Neural Network trained with backpropagation is assigned instead of the best-performing Neural Network from the previous generation. As a result, the Neuroevolution with the Backpropagation method shows better performance when increasing the target of the environmental performance of the agent.","PeriodicalId":391483,"journal":{"name":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"28 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis, Combination and Integration of Neuroevolution and Backpropagation Algorithms for Gaming Environment\",\"authors\":\"A. Darii, M. Moll, M. S. Nistor, S. Pickl, O. Novac, C. Novac, M. Gordan, C. Gordan\",\"doi\":\"10.1109/ECAI58194.2023.10193958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a method of combining Neu-roevolution with Backpropagation to achieve lower training times than Neuroevolution when training agents in a video game environment. The combination of these algorithms is reproduced by an alteration of the step of creating a new generation from the most capable agents with the creation of a new generation through the Backpropagation method using the preventively saved data of the most capable agent from the environment. Thus, for the new generation, a Neural Network trained with backpropagation is assigned instead of the best-performing Neural Network from the previous generation. As a result, the Neuroevolution with the Backpropagation method shows better performance when increasing the target of the environmental performance of the agent.\",\"PeriodicalId\":391483,\"journal\":{\"name\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"28 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI58194.2023.10193958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI58194.2023.10193958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将神经进化与反向传播相结合的方法,在电子游戏环境中训练智能体时,实现了比神经进化更短的训练时间。这些算法的组合是通过改变从最有能力的智能体创建新一代的步骤,通过反向传播方法使用从环境中预防保存的最有能力的智能体的数据创建新一代来复制的。因此,对于新一代,分配一个经过反向传播训练的神经网络,而不是上一代中表现最好的神经网络。结果表明,当增加agent的环境性能目标时,采用反向传播方法的神经进化算法表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis, Combination and Integration of Neuroevolution and Backpropagation Algorithms for Gaming Environment
This paper provides a method of combining Neu-roevolution with Backpropagation to achieve lower training times than Neuroevolution when training agents in a video game environment. The combination of these algorithms is reproduced by an alteration of the step of creating a new generation from the most capable agents with the creation of a new generation through the Backpropagation method using the preventively saved data of the most capable agent from the environment. Thus, for the new generation, a Neural Network trained with backpropagation is assigned instead of the best-performing Neural Network from the previous generation. As a result, the Neuroevolution with the Backpropagation method shows better performance when increasing the target of the environmental performance of the agent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信