四维高光谱光声数据恢复与可靠性分析

Weihang Liao, Art Subpa-Asa, Yinqiang Zheng, Imari Sato
{"title":"四维高光谱光声数据恢复与可靠性分析","authors":"Weihang Liao, Art Subpa-Asa, Yinqiang Zheng, Imari Sato","doi":"10.1109/CVPR46437.2021.00457","DOIUrl":null,"url":null,"abstract":"Hyperspectral photoacoustic (HSPA) spectroscopy is an emerging bi-modal imaging technology that is able to show the wavelength-dependent absorption distribution of the interior of a 3D volume. However, HSPA devices have to scan an object exhaustively in the spatial and spectral domains; and the acquired data tend to suffer from complex noise. This time-consuming scanning process and noise severely affects the usability of HSPA. It is therefore critical to examine the feasibility of 4D HSPA data restoration from an in-complete and noisy observation. In this work, we present a data reliability analysis for the depth and spectral domain. On the basis of this analysis, we explore the inherent data correlations and develop a restoration algorithm to recover 4D HSPA cubes. Experiments on real data verify that the proposed method achieves satisfactory restoration results.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"4D Hyperspectral Photoacoustic Data Restoration with Reliability Analysis\",\"authors\":\"Weihang Liao, Art Subpa-Asa, Yinqiang Zheng, Imari Sato\",\"doi\":\"10.1109/CVPR46437.2021.00457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral photoacoustic (HSPA) spectroscopy is an emerging bi-modal imaging technology that is able to show the wavelength-dependent absorption distribution of the interior of a 3D volume. However, HSPA devices have to scan an object exhaustively in the spatial and spectral domains; and the acquired data tend to suffer from complex noise. This time-consuming scanning process and noise severely affects the usability of HSPA. It is therefore critical to examine the feasibility of 4D HSPA data restoration from an in-complete and noisy observation. In this work, we present a data reliability analysis for the depth and spectral domain. On the basis of this analysis, we explore the inherent data correlations and develop a restoration algorithm to recover 4D HSPA cubes. Experiments on real data verify that the proposed method achieves satisfactory restoration results.\",\"PeriodicalId\":339646,\"journal\":{\"name\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR46437.2021.00457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.00457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱光声(HSPA)光谱学是一种新兴的双峰成像技术,能够显示三维体内部波长相关的吸收分布。然而,HSPA设备必须在空间和光谱域彻底扫描对象;而且采集到的数据容易受到复杂噪声的影响。这种费时的扫描过程和噪声严重影响了HSPA的可用性。因此,从不完整和有噪声的观测中检验4D HSPA数据恢复的可行性是至关重要的。在这项工作中,我们提出了深度和光谱域的数据可靠性分析。在此基础上,我们探索了数据的内在相关性,并开发了一种恢复四维HSPA立方体的算法。对实际数据的实验验证了该方法的恢复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4D Hyperspectral Photoacoustic Data Restoration with Reliability Analysis
Hyperspectral photoacoustic (HSPA) spectroscopy is an emerging bi-modal imaging technology that is able to show the wavelength-dependent absorption distribution of the interior of a 3D volume. However, HSPA devices have to scan an object exhaustively in the spatial and spectral domains; and the acquired data tend to suffer from complex noise. This time-consuming scanning process and noise severely affects the usability of HSPA. It is therefore critical to examine the feasibility of 4D HSPA data restoration from an in-complete and noisy observation. In this work, we present a data reliability analysis for the depth and spectral domain. On the basis of this analysis, we explore the inherent data correlations and develop a restoration algorithm to recover 4D HSPA cubes. Experiments on real data verify that the proposed method achieves satisfactory restoration results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信