基于混合长短期记忆神经网络的风速预测方法

G. R. Yadav, E. Muneender, M. Santhosh
{"title":"基于混合长短期记忆神经网络的风速预测方法","authors":"G. R. Yadav, E. Muneender, M. Santhosh","doi":"10.1109/SeFet48154.2021.9375644","DOIUrl":null,"url":null,"abstract":"Accurate wind speed prediction is a essential for enhanced wind energy integration with grid. A hybrid forecasting model is implemented to improve prediction accuracy. Decomposition technique is utilized to separate the input training wind speed data into intrinsic mode functions (IMFs). Deep neural network is used for the feature learning from each sub-series signal. Thus, the developed approach is tested with National Institute of Wind Energy (NIWE) dataset. Experimental evaluation in terms of statistical indices confirms that proposed hybrid model outperforms the existing benchmark approaches.","PeriodicalId":232560,"journal":{"name":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wind speed prediction using hybrid long short-term memory neural network based approach\",\"authors\":\"G. R. Yadav, E. Muneender, M. Santhosh\",\"doi\":\"10.1109/SeFet48154.2021.9375644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate wind speed prediction is a essential for enhanced wind energy integration with grid. A hybrid forecasting model is implemented to improve prediction accuracy. Decomposition technique is utilized to separate the input training wind speed data into intrinsic mode functions (IMFs). Deep neural network is used for the feature learning from each sub-series signal. Thus, the developed approach is tested with National Institute of Wind Energy (NIWE) dataset. Experimental evaluation in terms of statistical indices confirms that proposed hybrid model outperforms the existing benchmark approaches.\",\"PeriodicalId\":232560,\"journal\":{\"name\":\"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SeFet48154.2021.9375644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFet48154.2021.9375644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

准确的风速预测是提高风能并网能力的关键。为了提高预测精度,采用了混合预测模型。利用分解技术将输入训练风速数据分解为内禀模态函数。利用深度神经网络对各子序列信号进行特征学习。因此,开发的方法与国家风能研究所(NIWE)数据集进行了测试。统计指标方面的实验评价证实了所提出的混合模型优于现有的基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind speed prediction using hybrid long short-term memory neural network based approach
Accurate wind speed prediction is a essential for enhanced wind energy integration with grid. A hybrid forecasting model is implemented to improve prediction accuracy. Decomposition technique is utilized to separate the input training wind speed data into intrinsic mode functions (IMFs). Deep neural network is used for the feature learning from each sub-series signal. Thus, the developed approach is tested with National Institute of Wind Energy (NIWE) dataset. Experimental evaluation in terms of statistical indices confirms that proposed hybrid model outperforms the existing benchmark approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信