基于机器学习技术的1550 nm DFB激光器寿命预测

Khouloud Abdelli, D. Rafique, H. Griesser, S. Pachnicke
{"title":"基于机器学习技术的1550 nm DFB激光器寿命预测","authors":"Khouloud Abdelli, D. Rafique, H. Griesser, S. Pachnicke","doi":"10.1364/OFC.2020.Th2A.3","DOIUrl":null,"url":null,"abstract":"A novel approach based on an artificial neural network (ANN) for lifetime prediction of 1.55 μm InGaAsP MQW-DFB laser diodes is presented. It outperforms the conventional lifetime projection using accelerated aging tests.","PeriodicalId":173355,"journal":{"name":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lifetime Prediction of 1550 nm DFB Laser using Machine Learning Techniques\",\"authors\":\"Khouloud Abdelli, D. Rafique, H. Griesser, S. Pachnicke\",\"doi\":\"10.1364/OFC.2020.Th2A.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach based on an artificial neural network (ANN) for lifetime prediction of 1.55 μm InGaAsP MQW-DFB laser diodes is presented. It outperforms the conventional lifetime projection using accelerated aging tests.\",\"PeriodicalId\":173355,\"journal\":{\"name\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OFC.2020.Th2A.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OFC.2020.Th2A.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于人工神经网络的1.55 μm InGaAsP MQW-DFB激光二极管寿命预测方法。它优于使用加速老化试验的传统寿命预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifetime Prediction of 1550 nm DFB Laser using Machine Learning Techniques
A novel approach based on an artificial neural network (ANN) for lifetime prediction of 1.55 μm InGaAsP MQW-DFB laser diodes is presented. It outperforms the conventional lifetime projection using accelerated aging tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信