二维局部主成分分析在人脸识别中的应用

Yu-sheng Lin, Jianguo Wang, Jing-yu Yang
{"title":"二维局部主成分分析在人脸识别中的应用","authors":"Yu-sheng Lin, Jianguo Wang, Jing-yu Yang","doi":"10.1109/CCPR.2008.52","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature extraction method called two dimension locally principal component analysis (2DLPCA) for face recognition, which is based directly image matrix rather than 1D image vectors. 2DLPCA seeks to discover the intrinsic image local structure. This local structure may contain useful information for discrimination. Experimental results on ORL face database show the effectiveness of the proposed algorithm.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two Dimension Locally Principal Component Analysis for Face Recognition\",\"authors\":\"Yu-sheng Lin, Jianguo Wang, Jing-yu Yang\",\"doi\":\"10.1109/CCPR.2008.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a feature extraction method called two dimension locally principal component analysis (2DLPCA) for face recognition, which is based directly image matrix rather than 1D image vectors. 2DLPCA seeks to discover the intrinsic image local structure. This local structure may contain useful information for discrimination. Experimental results on ORL face database show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种直接基于图像矩阵而非一维图像向量的人脸识别特征提取方法——二维局部主成分分析(2DLPCA)。dlpca旨在发现图像的内在局部结构。这个局部结构可能包含有用的判别信息。在ORL人脸数据库上的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Dimension Locally Principal Component Analysis for Face Recognition
In this paper, we propose a feature extraction method called two dimension locally principal component analysis (2DLPCA) for face recognition, which is based directly image matrix rather than 1D image vectors. 2DLPCA seeks to discover the intrinsic image local structure. This local structure may contain useful information for discrimination. Experimental results on ORL face database show the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信