基于DSmT-SVM并行组合的手写数字识别

Nassim Abbas, Y. Chibani, H. Nemmour
{"title":"基于DSmT-SVM并行组合的手写数字识别","authors":"Nassim Abbas, Y. Chibani, H. Nemmour","doi":"10.1109/ICFHR.2012.208","DOIUrl":null,"url":null,"abstract":"We propose in this work a new handwritten digit recognition system based on parallel combination of SVM classifiers for managing conflict provided between their outputs. Firstly, we evaluate different methods of generating features to train the SVM classifiers that operate independently of each other. To improve the performance of the system, the outputs of SVM classifiers are combined through the Dezert-Smarandache theory. The proposed framework allows combining the calibrated SVM outputs issued from a sigmoid transformation and uses an estimation technique based on a supervised model to compute the belief assignments. Decision making is performed by maximizing the new Dezert-Smarandache probability. The performance evaluation of the proposed system is conducted on the well known US Postal Service database. Experimental results show that the proposed combination framework improves the recognition rate even when individual SVM classifiers provide conflicting outputs.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Handwritten Digit Recognition Based on a DSmT-SVM Parallel Combination\",\"authors\":\"Nassim Abbas, Y. Chibani, H. Nemmour\",\"doi\":\"10.1109/ICFHR.2012.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose in this work a new handwritten digit recognition system based on parallel combination of SVM classifiers for managing conflict provided between their outputs. Firstly, we evaluate different methods of generating features to train the SVM classifiers that operate independently of each other. To improve the performance of the system, the outputs of SVM classifiers are combined through the Dezert-Smarandache theory. The proposed framework allows combining the calibrated SVM outputs issued from a sigmoid transformation and uses an estimation technique based on a supervised model to compute the belief assignments. Decision making is performed by maximizing the new Dezert-Smarandache probability. The performance evaluation of the proposed system is conducted on the well known US Postal Service database. Experimental results show that the proposed combination framework improves the recognition rate even when individual SVM classifiers provide conflicting outputs.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这项工作中,我们提出了一种新的手写数字识别系统,该系统基于支持向量机分类器的并行组合来管理其输出之间提供的冲突。首先,我们评估了不同的生成特征的方法来训练相互独立运行的SVM分类器。为了提高系统的性能,通过Dezert-Smarandache理论对支持向量机分类器的输出进行组合。提出的框架允许组合由s型变换发出的校准支持向量机输出,并使用基于监督模型的估计技术来计算信念赋值。通过最大化新的Dezert-Smarandache概率来执行决策。系统的性能评估是在著名的美国邮政服务数据库上进行的。实验结果表明,即使单个SVM分类器提供冲突的输出,所提出的组合框架也能提高识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten Digit Recognition Based on a DSmT-SVM Parallel Combination
We propose in this work a new handwritten digit recognition system based on parallel combination of SVM classifiers for managing conflict provided between their outputs. Firstly, we evaluate different methods of generating features to train the SVM classifiers that operate independently of each other. To improve the performance of the system, the outputs of SVM classifiers are combined through the Dezert-Smarandache theory. The proposed framework allows combining the calibrated SVM outputs issued from a sigmoid transformation and uses an estimation technique based on a supervised model to compute the belief assignments. Decision making is performed by maximizing the new Dezert-Smarandache probability. The performance evaluation of the proposed system is conducted on the well known US Postal Service database. Experimental results show that the proposed combination framework improves the recognition rate even when individual SVM classifiers provide conflicting outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信