Gaurav Sinha, M. Kanagarathinam, Sujith Rengan Jayaseelan, G. Choudhary
{"title":"下一代移动网络的跨层QUIC","authors":"Gaurav Sinha, M. Kanagarathinam, Sujith Rengan Jayaseelan, G. Choudhary","doi":"10.1109/WCNC45663.2020.9120850","DOIUrl":null,"url":null,"abstract":"Requirements for Next Generation Mobile Networks (NGMN) include low latency, higher throughput, scalability, and energy efficiency. As 5G millimeter wave (mmWave) band is short-range, the handover is inevitable. Google proposed QUIC (Quick UDP Internet Connection), which aims to address these challenges. However, Google QUIC (GQUIC), follows “WiFi-First” policy causing frequent network switching, which can lead to a throughput reduction and fast battery degradation. In this paper, we propose Cross-layer QUIC (CQUIC) framework, that follows “WiFi-if-best” policy to enhance the throughput and resilience by using a Cross-Layer approach. CQUIC proposes a novel migration scheme in QUIC which adapts to the dynamic network characteristics. GQUIC protocol with low bandwidth and high round-trip-time fail to migrate for seamless User Experience. CQUIC algorithm predicts Cross-Layer Score (CLS) which incorporates predicted Signal-to-Interference Noise Ratio (SINR), QUIC Bandwidth, round-triptime (RTT) stats from QUIC Session and models the handover decision pro-actively. Compared with state-of-the-art methods such as GQUIC and HTTP (using TCP) this paper reveals the significant benefits of the proposed method. A series of experimental results obtained in live air network over Samsung Galaxy S10 devices show CQUIC outperforms the GQUIC by 20%, TCP by 36% and MPTCP (Backup) by 17% in terms of throughput. Furthermore, CQUIC compared with MPTCP, reduces the data consumption over mobile network and operates green by reducing the power consumption by 25%.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"CQUIC: Cross-Layer QUIC for Next Generation Mobile Networks\",\"authors\":\"Gaurav Sinha, M. Kanagarathinam, Sujith Rengan Jayaseelan, G. Choudhary\",\"doi\":\"10.1109/WCNC45663.2020.9120850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Requirements for Next Generation Mobile Networks (NGMN) include low latency, higher throughput, scalability, and energy efficiency. As 5G millimeter wave (mmWave) band is short-range, the handover is inevitable. Google proposed QUIC (Quick UDP Internet Connection), which aims to address these challenges. However, Google QUIC (GQUIC), follows “WiFi-First” policy causing frequent network switching, which can lead to a throughput reduction and fast battery degradation. In this paper, we propose Cross-layer QUIC (CQUIC) framework, that follows “WiFi-if-best” policy to enhance the throughput and resilience by using a Cross-Layer approach. CQUIC proposes a novel migration scheme in QUIC which adapts to the dynamic network characteristics. GQUIC protocol with low bandwidth and high round-trip-time fail to migrate for seamless User Experience. CQUIC algorithm predicts Cross-Layer Score (CLS) which incorporates predicted Signal-to-Interference Noise Ratio (SINR), QUIC Bandwidth, round-triptime (RTT) stats from QUIC Session and models the handover decision pro-actively. Compared with state-of-the-art methods such as GQUIC and HTTP (using TCP) this paper reveals the significant benefits of the proposed method. A series of experimental results obtained in live air network over Samsung Galaxy S10 devices show CQUIC outperforms the GQUIC by 20%, TCP by 36% and MPTCP (Backup) by 17% in terms of throughput. Furthermore, CQUIC compared with MPTCP, reduces the data consumption over mobile network and operates green by reducing the power consumption by 25%.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CQUIC: Cross-Layer QUIC for Next Generation Mobile Networks
Requirements for Next Generation Mobile Networks (NGMN) include low latency, higher throughput, scalability, and energy efficiency. As 5G millimeter wave (mmWave) band is short-range, the handover is inevitable. Google proposed QUIC (Quick UDP Internet Connection), which aims to address these challenges. However, Google QUIC (GQUIC), follows “WiFi-First” policy causing frequent network switching, which can lead to a throughput reduction and fast battery degradation. In this paper, we propose Cross-layer QUIC (CQUIC) framework, that follows “WiFi-if-best” policy to enhance the throughput and resilience by using a Cross-Layer approach. CQUIC proposes a novel migration scheme in QUIC which adapts to the dynamic network characteristics. GQUIC protocol with low bandwidth and high round-trip-time fail to migrate for seamless User Experience. CQUIC algorithm predicts Cross-Layer Score (CLS) which incorporates predicted Signal-to-Interference Noise Ratio (SINR), QUIC Bandwidth, round-triptime (RTT) stats from QUIC Session and models the handover decision pro-actively. Compared with state-of-the-art methods such as GQUIC and HTTP (using TCP) this paper reveals the significant benefits of the proposed method. A series of experimental results obtained in live air network over Samsung Galaxy S10 devices show CQUIC outperforms the GQUIC by 20%, TCP by 36% and MPTCP (Backup) by 17% in terms of throughput. Furthermore, CQUIC compared with MPTCP, reduces the data consumption over mobile network and operates green by reducing the power consumption by 25%.