Seher Acer, Abdurrahman Yasar, S. Rajamanickam, Michael M. Wolf, Ümit V. Çatalyürek
{"title":"分布式内存系统上的可伸缩三角计数","authors":"Seher Acer, Abdurrahman Yasar, S. Rajamanickam, Michael M. Wolf, Ümit V. Çatalyürek","doi":"10.1109/HPEC.2019.8916302","DOIUrl":null,"url":null,"abstract":"Triangle counting is a foundational graph-analysis kernel in network science. It has also been one of the challenge problems for the “Static Graph Challenge”. In this work, we propose a novel, hybrid, parallel triangle counting algorithm based on its linear algebra formulation. Our framework uses MPI and Cilk to exploit the benefits of distributed-memory and shared-memory parallelism, respectively. The problem is partitioned among MPI processes using a two-dimensional (2D) Cartesian block partitioning. One-dimensional (1D) rowwise partitioning is used within the Cartesian blocks for shared-memory parallelism using the Cilk programming model. Besides exhibiting very good strong scaling behavior in almost all tested graphs, our algorithm achieves the fastest time on the 1.4B edge real-world twitter graph, which is 3.217 seconds, on 1,092 cores. In comparison to past distributed-memory parallel winners of the graph challenge, we demonstrate a speed up of 2.7× on this twitter graph. This is also the fastest time reported for parallel triangle counting on the twitter graph when the graph is not replicated.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Scalable Triangle Counting on Distributed-Memory Systems\",\"authors\":\"Seher Acer, Abdurrahman Yasar, S. Rajamanickam, Michael M. Wolf, Ümit V. Çatalyürek\",\"doi\":\"10.1109/HPEC.2019.8916302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triangle counting is a foundational graph-analysis kernel in network science. It has also been one of the challenge problems for the “Static Graph Challenge”. In this work, we propose a novel, hybrid, parallel triangle counting algorithm based on its linear algebra formulation. Our framework uses MPI and Cilk to exploit the benefits of distributed-memory and shared-memory parallelism, respectively. The problem is partitioned among MPI processes using a two-dimensional (2D) Cartesian block partitioning. One-dimensional (1D) rowwise partitioning is used within the Cartesian blocks for shared-memory parallelism using the Cilk programming model. Besides exhibiting very good strong scaling behavior in almost all tested graphs, our algorithm achieves the fastest time on the 1.4B edge real-world twitter graph, which is 3.217 seconds, on 1,092 cores. In comparison to past distributed-memory parallel winners of the graph challenge, we demonstrate a speed up of 2.7× on this twitter graph. This is also the fastest time reported for parallel triangle counting on the twitter graph when the graph is not replicated.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Triangle Counting on Distributed-Memory Systems
Triangle counting is a foundational graph-analysis kernel in network science. It has also been one of the challenge problems for the “Static Graph Challenge”. In this work, we propose a novel, hybrid, parallel triangle counting algorithm based on its linear algebra formulation. Our framework uses MPI and Cilk to exploit the benefits of distributed-memory and shared-memory parallelism, respectively. The problem is partitioned among MPI processes using a two-dimensional (2D) Cartesian block partitioning. One-dimensional (1D) rowwise partitioning is used within the Cartesian blocks for shared-memory parallelism using the Cilk programming model. Besides exhibiting very good strong scaling behavior in almost all tested graphs, our algorithm achieves the fastest time on the 1.4B edge real-world twitter graph, which is 3.217 seconds, on 1,092 cores. In comparison to past distributed-memory parallel winners of the graph challenge, we demonstrate a speed up of 2.7× on this twitter graph. This is also the fastest time reported for parallel triangle counting on the twitter graph when the graph is not replicated.