B. Majumdar, D. Baer, S. Chakraborty, K. Esselle, M. Heimlich
{"title":"3D打印双脊喇叭天线","authors":"B. Majumdar, D. Baer, S. Chakraborty, K. Esselle, M. Heimlich","doi":"10.1109/ICEAA.2016.7731529","DOIUrl":null,"url":null,"abstract":"A 3D printed dual ridged horn antenna (DRHA) is presented. The antenna design is optimized for additive manufacturing and is 3D printed using acrylonitrile butadiene styrene (ABS) and then painted with nickel based aerosol spray. The coaxial transition is also included in the 3D printed prototype. The antenna was manufactured with the intention of improving learning and education of electromagnetism and antennas for undergraduate students using a low cost personal desktop 3D printer. The painted DRHA has a 10 dB return-loss bandwidth of 6621 MHz (1905 MHz-8526 MHz) with a peak gain of 11 dBi. This prototype is the first known ABS based horn antenna with the coaxial transition embedded into it.","PeriodicalId":434972,"journal":{"name":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 3D printed dual-ridged horn antenna\",\"authors\":\"B. Majumdar, D. Baer, S. Chakraborty, K. Esselle, M. Heimlich\",\"doi\":\"10.1109/ICEAA.2016.7731529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 3D printed dual ridged horn antenna (DRHA) is presented. The antenna design is optimized for additive manufacturing and is 3D printed using acrylonitrile butadiene styrene (ABS) and then painted with nickel based aerosol spray. The coaxial transition is also included in the 3D printed prototype. The antenna was manufactured with the intention of improving learning and education of electromagnetism and antennas for undergraduate students using a low cost personal desktop 3D printer. The painted DRHA has a 10 dB return-loss bandwidth of 6621 MHz (1905 MHz-8526 MHz) with a peak gain of 11 dBi. This prototype is the first known ABS based horn antenna with the coaxial transition embedded into it.\",\"PeriodicalId\":434972,\"journal\":{\"name\":\"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2016.7731529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2016.7731529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 3D printed dual ridged horn antenna (DRHA) is presented. The antenna design is optimized for additive manufacturing and is 3D printed using acrylonitrile butadiene styrene (ABS) and then painted with nickel based aerosol spray. The coaxial transition is also included in the 3D printed prototype. The antenna was manufactured with the intention of improving learning and education of electromagnetism and antennas for undergraduate students using a low cost personal desktop 3D printer. The painted DRHA has a 10 dB return-loss bandwidth of 6621 MHz (1905 MHz-8526 MHz) with a peak gain of 11 dBi. This prototype is the first known ABS based horn antenna with the coaxial transition embedded into it.