利用交叉样例viola-jones算法进行热人脸检测

H. Tran, Chunhua Dong, M. Naghedolfeizi, Xiangyan Zeng
{"title":"利用交叉样例viola-jones算法进行热人脸检测","authors":"H. Tran, Chunhua Dong, M. Naghedolfeizi, Xiangyan Zeng","doi":"10.1145/3409334.3452083","DOIUrl":null,"url":null,"abstract":"Detection of the face region is a key step in a face recognition system. Thermal images are widely used in many applications where normal visibility is reduced, impaired or ineffective, such as night surveillance and fugitive searches. However, low spatial resolution brings challenges to face detection in thermal images. Viola-Jones is an object detection method widely used for face detection. The algorithm suffers from missed faces and wrongly detected non-face objects due to low resolution of thermal images. To improve the face detection performance for thermal images, we propose to incorporate cross-examples into our framework. In addition to using negative samples of non-face thermal images, we utilize non-face visible images as part of the negative samples (cross-examples). Cross-examples effectively increase the discriminability between the positive samples and negative samples. Experimental results show that the proposed scheme can effectively reduce the non-face objects and thus improve accuracy of face detection.","PeriodicalId":148741,"journal":{"name":"Proceedings of the 2021 ACM Southeast Conference","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using cross-examples in viola-jones algorithm for thermal face detection\",\"authors\":\"H. Tran, Chunhua Dong, M. Naghedolfeizi, Xiangyan Zeng\",\"doi\":\"10.1145/3409334.3452083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of the face region is a key step in a face recognition system. Thermal images are widely used in many applications where normal visibility is reduced, impaired or ineffective, such as night surveillance and fugitive searches. However, low spatial resolution brings challenges to face detection in thermal images. Viola-Jones is an object detection method widely used for face detection. The algorithm suffers from missed faces and wrongly detected non-face objects due to low resolution of thermal images. To improve the face detection performance for thermal images, we propose to incorporate cross-examples into our framework. In addition to using negative samples of non-face thermal images, we utilize non-face visible images as part of the negative samples (cross-examples). Cross-examples effectively increase the discriminability between the positive samples and negative samples. Experimental results show that the proposed scheme can effectively reduce the non-face objects and thus improve accuracy of face detection.\",\"PeriodicalId\":148741,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Southeast Conference\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Southeast Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409334.3452083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Southeast Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409334.3452083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸区域的检测是人脸识别系统的关键步骤。热图像广泛应用于正常能见度降低,受损或无效的许多应用中,例如夜间监视和逃犯搜索。然而,低空间分辨率给热图像中的人脸检测带来了挑战。Viola-Jones是一种广泛用于人脸检测的对象检测方法。由于热图像分辨率低,该算法存在人脸缺失和非人脸目标检测错误的问题。为了提高热图像的人脸检测性能,我们建议在框架中加入交叉样例。除了使用非人脸热图像的负样本外,我们还利用非人脸可见图像作为负样本的一部分(交叉示例)。交叉示例有效地提高了正样本和负样本之间的可辨别性。实验结果表明,该方法可以有效地减少非人脸目标,从而提高人脸检测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using cross-examples in viola-jones algorithm for thermal face detection
Detection of the face region is a key step in a face recognition system. Thermal images are widely used in many applications where normal visibility is reduced, impaired or ineffective, such as night surveillance and fugitive searches. However, low spatial resolution brings challenges to face detection in thermal images. Viola-Jones is an object detection method widely used for face detection. The algorithm suffers from missed faces and wrongly detected non-face objects due to low resolution of thermal images. To improve the face detection performance for thermal images, we propose to incorporate cross-examples into our framework. In addition to using negative samples of non-face thermal images, we utilize non-face visible images as part of the negative samples (cross-examples). Cross-examples effectively increase the discriminability between the positive samples and negative samples. Experimental results show that the proposed scheme can effectively reduce the non-face objects and thus improve accuracy of face detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信