基于并行CNN的高速公路长期交通预测

Donghyun Lim, Minhyeok Lee, Junhee Seok
{"title":"基于并行CNN的高速公路长期交通预测","authors":"Donghyun Lim, Minhyeok Lee, Junhee Seok","doi":"10.1109/ICITE50838.2020.9231436","DOIUrl":null,"url":null,"abstract":"For navigation system, predicting future traffic conditions is crucial. To predict the traffic condition, statistical methods and neural network models have been studied. However, conventional methods have three limitations in which only the temporal properties are used, only narrow sections or time steps are predicted and not general road sections such as all section of highway but specific sections are used as test results. This paper proposes a parallel Convolutional Neural Network (CNN) that uses spatiotemporal properties and predicts for the next five hours and up to 400 km ranges in Korea's representative highway. Using a highway dataset, the proposed parallel CNN is trained and evaluated. As a result, the result of our model is improved by 10.6%, in terms of Root Mean Square Error (RMSE), compared to the conventional method. Moreover, in terms of the average of Average Speed Difference (ASD), the result of our model is improved by 63.5%.","PeriodicalId":112371,"journal":{"name":"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long Term Traffic Prediction in Highway Using Parallel CNN\",\"authors\":\"Donghyun Lim, Minhyeok Lee, Junhee Seok\",\"doi\":\"10.1109/ICITE50838.2020.9231436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For navigation system, predicting future traffic conditions is crucial. To predict the traffic condition, statistical methods and neural network models have been studied. However, conventional methods have three limitations in which only the temporal properties are used, only narrow sections or time steps are predicted and not general road sections such as all section of highway but specific sections are used as test results. This paper proposes a parallel Convolutional Neural Network (CNN) that uses spatiotemporal properties and predicts for the next five hours and up to 400 km ranges in Korea's representative highway. Using a highway dataset, the proposed parallel CNN is trained and evaluated. As a result, the result of our model is improved by 10.6%, in terms of Root Mean Square Error (RMSE), compared to the conventional method. Moreover, in terms of the average of Average Speed Difference (ASD), the result of our model is improved by 63.5%.\",\"PeriodicalId\":112371,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITE50838.2020.9231436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE50838.2020.9231436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于导航系统来说,预测未来的交通状况至关重要。为了预测交通状况,研究了统计方法和神经网络模型。然而,传统的方法有三个局限性,即只使用时间属性,只预测狭窄的路段或时间步长,不使用一般路段(如公路的所有路段)而是使用特定路段作为测试结果。本文提出了一种并行卷积神经网络(CNN),该网络利用时空特性预测韩国代表性高速公路未来5小时和400公里范围内的情况。使用高速公路数据集,对所提出的并行CNN进行训练和评估。因此,与传统方法相比,我们模型的结果在均方根误差(RMSE)方面提高了10.6%。此外,在平均速度差(ASD)的平均值方面,我们的模型结果提高了63.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Term Traffic Prediction in Highway Using Parallel CNN
For navigation system, predicting future traffic conditions is crucial. To predict the traffic condition, statistical methods and neural network models have been studied. However, conventional methods have three limitations in which only the temporal properties are used, only narrow sections or time steps are predicted and not general road sections such as all section of highway but specific sections are used as test results. This paper proposes a parallel Convolutional Neural Network (CNN) that uses spatiotemporal properties and predicts for the next five hours and up to 400 km ranges in Korea's representative highway. Using a highway dataset, the proposed parallel CNN is trained and evaluated. As a result, the result of our model is improved by 10.6%, in terms of Root Mean Square Error (RMSE), compared to the conventional method. Moreover, in terms of the average of Average Speed Difference (ASD), the result of our model is improved by 63.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信