leslie - gower型分数阶营养食物链模型的全局稳定性

{"title":"leslie - gower型分数阶营养食物链模型的全局稳定性","authors":"","doi":"10.7153/FDC-2019-09-11","DOIUrl":null,"url":null,"abstract":"Recently, the dynamical behaviors of a fractional order three species food chain model was studied by Alidousti and Ghahfarokhi ({\\it Nonlinear Dynamics, doi: org/10.1007/s11071-018-4663-6, 2018}). They proved both the local and global asymptotic stability of all equilibrium points except the interior one. This work extends their work and gives proof of both the local and global stability analysis of the interior equilibrium point. Numerical examples are also provided to substantiate the analytical findings.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"327 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global stability of a Leslie-Gower-type fractional order tritrophic food chain model\",\"authors\":\"\",\"doi\":\"10.7153/FDC-2019-09-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the dynamical behaviors of a fractional order three species food chain model was studied by Alidousti and Ghahfarokhi ({\\\\it Nonlinear Dynamics, doi: org/10.1007/s11071-018-4663-6, 2018}). They proved both the local and global asymptotic stability of all equilibrium points except the interior one. This work extends their work and gives proof of both the local and global stability analysis of the interior equilibrium point. Numerical examples are also provided to substantiate the analytical findings.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"327 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/FDC-2019-09-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/FDC-2019-09-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最近,Alidousti和Ghahfarokhi ({\it非线性动力学,doi: org/10.1007/s11071-018- 4666,2018})研究了分数阶三种食物链模型的动力学行为。他们证明了除内部平衡点外所有平衡点的局部和全局渐近稳定性。本文扩展了他们的工作,给出了内部平衡点的局部和全局稳定性分析的证明。数值算例也证实了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stability of a Leslie-Gower-type fractional order tritrophic food chain model
Recently, the dynamical behaviors of a fractional order three species food chain model was studied by Alidousti and Ghahfarokhi ({\it Nonlinear Dynamics, doi: org/10.1007/s11071-018-4663-6, 2018}). They proved both the local and global asymptotic stability of all equilibrium points except the interior one. This work extends their work and gives proof of both the local and global stability analysis of the interior equilibrium point. Numerical examples are also provided to substantiate the analytical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信