应用预训练掩模R-CNN模型的微调表面目标检测

Haruhiro Fujita, Masatoshi Itagaki, Kenta Ichikawa, Yew Kwang Hooi, Kazuyoshi Kawahara, A. Sarlan
{"title":"应用预训练掩模R-CNN模型的微调表面目标检测","authors":"Haruhiro Fujita, Masatoshi Itagaki, Kenta Ichikawa, Yew Kwang Hooi, Kazuyoshi Kawahara, A. Sarlan","doi":"10.1109/ICCI51257.2020.9247666","DOIUrl":null,"url":null,"abstract":"This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Precisions and Average Recalls. Result indicates a substantial false negatives or “left judgement” counts for linear cracks, joints, fillings, potholes, stains, shadows and patching with grid cracks classes. There were significant number of incorrectly predicted label instances. To improve the result, an alternative metric calculation method was tested. However, the results showed strong mutual interferences caused by misinterpretation of the scratches with other object classes.","PeriodicalId":194158,"journal":{"name":"2020 International Conference on Computational Intelligence (ICCI)","volume":"86 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fine-tuned Surface Object Detection Applying Pre-trained Mask R-CNN Models\",\"authors\":\"Haruhiro Fujita, Masatoshi Itagaki, Kenta Ichikawa, Yew Kwang Hooi, Kazuyoshi Kawahara, A. Sarlan\",\"doi\":\"10.1109/ICCI51257.2020.9247666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Precisions and Average Recalls. Result indicates a substantial false negatives or “left judgement” counts for linear cracks, joints, fillings, potholes, stains, shadows and patching with grid cracks classes. There were significant number of incorrectly predicted label instances. To improve the result, an alternative metric calculation method was tested. However, the results showed strong mutual interferences caused by misinterpretation of the scratches with other object classes.\",\"PeriodicalId\":194158,\"journal\":{\"name\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"volume\":\"86 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI51257.2020.9247666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI51257.2020.9247666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究使用张量流对象检测API上提供的四种Mask R-CNN模型评估路面对象检测任务。模型使用COCO数据集进行预训练,并通过15,1ss分段路面标注标签进行微调。使用验证数据集获得平均精密度和平均召回率。结果表明,线性裂缝、接缝、填充物、坑洞、污渍、阴影和网格裂缝类补丁的数量存在大量假阴性或“左判断”。有大量错误预测的标签实例。为了改善结果,测试了一种替代度量计算方法。然而,结果显示,由于对划痕与其他对象类的误解,造成了强烈的相互干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-tuned Surface Object Detection Applying Pre-trained Mask R-CNN Models
This study evaluates road surface object detection tasks using four Mask R-CNN models available on the Tensor-Flow Object Detection API. The models were pre-trained using COCO datasets and fine-tuned by 15,1SS segmented road surface annotation tags. Validation data set was used to obtain Average Precisions and Average Recalls. Result indicates a substantial false negatives or “left judgement” counts for linear cracks, joints, fillings, potholes, stains, shadows and patching with grid cracks classes. There were significant number of incorrectly predicted label instances. To improve the result, an alternative metric calculation method was tested. However, the results showed strong mutual interferences caused by misinterpretation of the scratches with other object classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信