一种负载敏感的动态缩放矩阵乘法器结构

Yuran Qiao, Junzhong Shen, Tao Xiao, Qianming Yang
{"title":"一种负载敏感的动态缩放矩阵乘法器结构","authors":"Yuran Qiao, Junzhong Shen, Tao Xiao, Qianming Yang","doi":"10.1109/CICN.2016.113","DOIUrl":null,"url":null,"abstract":"Matrix multiplication is one of the most widely used computational kernels in scientific computing and machine learning. Using dedicated circuit for matrix multiplication can reduce the computational time and energy consumption. Traditional matrix multipliers always adopt linear array architecture, which works inefficiently when the size of matrix sub-block is much smaller than the array length. Using short array structure can improve the computational efficiency at the cost of occupying more memory bandwidth. In this paper, we present a workload sensitive dynamic scaling matrix multiplier structure, which can dynamically adjust the array length according to the matrix size. We build a prototype system on a Xilinx Zynq XC7Z045 FPGA. The result shows that compared with a fixed array architecture our design achieves much better performance and needs less memory bandwidth.","PeriodicalId":189849,"journal":{"name":"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Workload Sensitive Dynamic Scaling Matrix Multiplier Structure\",\"authors\":\"Yuran Qiao, Junzhong Shen, Tao Xiao, Qianming Yang\",\"doi\":\"10.1109/CICN.2016.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix multiplication is one of the most widely used computational kernels in scientific computing and machine learning. Using dedicated circuit for matrix multiplication can reduce the computational time and energy consumption. Traditional matrix multipliers always adopt linear array architecture, which works inefficiently when the size of matrix sub-block is much smaller than the array length. Using short array structure can improve the computational efficiency at the cost of occupying more memory bandwidth. In this paper, we present a workload sensitive dynamic scaling matrix multiplier structure, which can dynamically adjust the array length according to the matrix size. We build a prototype system on a Xilinx Zynq XC7Z045 FPGA. The result shows that compared with a fixed array architecture our design achieves much better performance and needs less memory bandwidth.\",\"PeriodicalId\":189849,\"journal\":{\"name\":\"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2016.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2016.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵乘法是科学计算和机器学习中应用最广泛的计算核之一。采用专用电路进行矩阵乘法运算可以减少计算时间和能耗。传统的矩阵乘法器多采用线性阵列结构,当矩阵子块的大小远远小于阵列长度时,效率低下。采用短阵列结构可以提高计算效率,但代价是占用更多的内存带宽。本文提出了一种工作负载敏感的动态缩放矩阵乘法器结构,它可以根据矩阵的大小动态调整数组的长度。我们在Xilinx Zynq XC7Z045 FPGA上构建了一个原型系统。结果表明,与固定阵列结构相比,我们的设计获得了更好的性能,并且需要更少的内存带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Workload Sensitive Dynamic Scaling Matrix Multiplier Structure
Matrix multiplication is one of the most widely used computational kernels in scientific computing and machine learning. Using dedicated circuit for matrix multiplication can reduce the computational time and energy consumption. Traditional matrix multipliers always adopt linear array architecture, which works inefficiently when the size of matrix sub-block is much smaller than the array length. Using short array structure can improve the computational efficiency at the cost of occupying more memory bandwidth. In this paper, we present a workload sensitive dynamic scaling matrix multiplier structure, which can dynamically adjust the array length according to the matrix size. We build a prototype system on a Xilinx Zynq XC7Z045 FPGA. The result shows that compared with a fixed array architecture our design achieves much better performance and needs less memory bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信