M3MIML:一种多实例多标签学习的最大边际方法

Min-Ling Zhang, Zhi-Hua Zhou
{"title":"M3MIML:一种多实例多标签学习的最大边际方法","authors":"Min-Ling Zhang, Zhi-Hua Zhou","doi":"10.1109/ICDM.2008.27","DOIUrl":null,"url":null,"abstract":"Multi-instance multi-label learning (MIML) deals with the problem where each training example is associated with not only multiple instances but also multiple class labels. Previous MIML algorithms work by identifying its equivalence in degenerated versions of multi-instance multi-label learning. However, useful information encoded in training examples may get lost during the identification process. In this paper, a maximum margin method is proposed for MIML which directly exploits the connections between instances and labels. The learning task is formulated as a quadratic programming (QP) problem and implemented in its dual form. Applications to scene classification and text categorization show that the proposed approach achieves superior performance over existing MIML methods.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"M3MIML: A Maximum Margin Method for Multi-instance Multi-label Learning\",\"authors\":\"Min-Ling Zhang, Zhi-Hua Zhou\",\"doi\":\"10.1109/ICDM.2008.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-instance multi-label learning (MIML) deals with the problem where each training example is associated with not only multiple instances but also multiple class labels. Previous MIML algorithms work by identifying its equivalence in degenerated versions of multi-instance multi-label learning. However, useful information encoded in training examples may get lost during the identification process. In this paper, a maximum margin method is proposed for MIML which directly exploits the connections between instances and labels. The learning task is formulated as a quadratic programming (QP) problem and implemented in its dual form. Applications to scene classification and text categorization show that the proposed approach achieves superior performance over existing MIML methods.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

多实例多标签学习(MIML)处理的是每个训练样例不仅与多个实例相关联,而且与多个类标签相关联的问题。以前的MIML算法通过识别其在多实例多标签学习的退化版本中的等价性来工作。然而,编码在训练样例中的有用信息可能在识别过程中丢失。本文提出了一种直接利用实例与标签之间联系的MIML最大边界方法。该学习任务被表述为一个二次规划(QP)问题,并以对偶形式实现。在场景分类和文本分类中的应用表明,该方法比现有的MIML方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M3MIML: A Maximum Margin Method for Multi-instance Multi-label Learning
Multi-instance multi-label learning (MIML) deals with the problem where each training example is associated with not only multiple instances but also multiple class labels. Previous MIML algorithms work by identifying its equivalence in degenerated versions of multi-instance multi-label learning. However, useful information encoded in training examples may get lost during the identification process. In this paper, a maximum margin method is proposed for MIML which directly exploits the connections between instances and labels. The learning task is formulated as a quadratic programming (QP) problem and implemented in its dual form. Applications to scene classification and text categorization show that the proposed approach achieves superior performance over existing MIML methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信