复杂生物网络的细丝跟踪与编码

D. Mayerich, J. Keyser
{"title":"复杂生物网络的细丝跟踪与编码","authors":"D. Mayerich, J. Keyser","doi":"10.1145/1364901.1364952","DOIUrl":null,"url":null,"abstract":"We present a framework for segmenting and storing filament networks from scalar volume data. Filament structures are commonly found in data generated using high-throughput microscopy. These data sets can be several gigabytes in size because they are either spatially large or have a high number of scalar channels. Filaments in microscopy data sets are difficult to segment because their diameter is often near the sampling resolution of the microscope, yet single filaments can span large data sets. We describe a novel method to trace filaments through scalar volume data sets that is robust to both noisy and under-sampled data. We use a GPU-based scheme to accelerate the tracing algorithm, making it more useful for large data sets. After the initial structure is traced, we can use this information to create a bounding volume around the network and encode the volumetric data associated with it. Taken together, this framework provides a convenient method for accessing network structure and connectivity while providing compressed access to the original volumetric data associated with the network.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Filament tracking and encoding for complex biological networks\",\"authors\":\"D. Mayerich, J. Keyser\",\"doi\":\"10.1145/1364901.1364952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for segmenting and storing filament networks from scalar volume data. Filament structures are commonly found in data generated using high-throughput microscopy. These data sets can be several gigabytes in size because they are either spatially large or have a high number of scalar channels. Filaments in microscopy data sets are difficult to segment because their diameter is often near the sampling resolution of the microscope, yet single filaments can span large data sets. We describe a novel method to trace filaments through scalar volume data sets that is robust to both noisy and under-sampled data. We use a GPU-based scheme to accelerate the tracing algorithm, making it more useful for large data sets. After the initial structure is traced, we can use this information to create a bounding volume around the network and encode the volumetric data associated with it. Taken together, this framework provides a convenient method for accessing network structure and connectivity while providing compressed access to the original volumetric data associated with the network.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1364901.1364952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一个从标量体积数据中分割和存储长丝网络的框架。在使用高通量显微镜生成的数据中,通常发现长丝结构。这些数据集的大小可以达到几gb,因为它们要么空间很大,要么具有大量的标量通道。显微镜数据集中的细丝很难分割,因为它们的直径通常接近显微镜的采样分辨率,然而单个细丝可以跨越大的数据集。我们描述了一种通过标量体积数据集跟踪细丝的新方法,该方法对噪声和欠采样数据都具有鲁棒性。我们使用基于gpu的方案来加速跟踪算法,使其更适用于大型数据集。跟踪初始结构之后,我们可以使用该信息在网络周围创建一个边界卷,并对与其关联的体积数据进行编码。总的来说,这个框架提供了一种方便的方法来访问网络结构和连接性,同时提供对与网络相关的原始体积数据的压缩访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filament tracking and encoding for complex biological networks
We present a framework for segmenting and storing filament networks from scalar volume data. Filament structures are commonly found in data generated using high-throughput microscopy. These data sets can be several gigabytes in size because they are either spatially large or have a high number of scalar channels. Filaments in microscopy data sets are difficult to segment because their diameter is often near the sampling resolution of the microscope, yet single filaments can span large data sets. We describe a novel method to trace filaments through scalar volume data sets that is robust to both noisy and under-sampled data. We use a GPU-based scheme to accelerate the tracing algorithm, making it more useful for large data sets. After the initial structure is traced, we can use this information to create a bounding volume around the network and encode the volumetric data associated with it. Taken together, this framework provides a convenient method for accessing network structure and connectivity while providing compressed access to the original volumetric data associated with the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信