{"title":"一种基于时间的噪声整形模数转换器,采用门环振荡器","authors":"Y. Yoon, Sang-Hyun Park, Seonghwan Cho","doi":"10.1109/IMWS2.2011.6027172","DOIUrl":null,"url":null,"abstract":"In this paper, a time-based analog-to-digital converter (ADC) with first order noise shaping property is presented. The ADC consists of a pulse-width modulator (PWM) and a time-to-digital converter (TDC) based on a gated-ring oscillator. A prototype is designed in 0.18µm CMOS and simulated to verify the concept. The ADC shows high linearity despite the open loop architecture since the linearity does not depend on the frequency tuning characteristic of oscillators unlike conventional noise shaping time-based ADCs. With the sampling frequency of 10MHz, the prototype achieves spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) of 66dB and 56dB, respectively, when the signal bandwidth is 500kHz.","PeriodicalId":367154,"journal":{"name":"2011 IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A time-based noise shaping analog-to-digital converter using a gated-ring oscillator\",\"authors\":\"Y. Yoon, Sang-Hyun Park, Seonghwan Cho\",\"doi\":\"10.1109/IMWS2.2011.6027172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a time-based analog-to-digital converter (ADC) with first order noise shaping property is presented. The ADC consists of a pulse-width modulator (PWM) and a time-to-digital converter (TDC) based on a gated-ring oscillator. A prototype is designed in 0.18µm CMOS and simulated to verify the concept. The ADC shows high linearity despite the open loop architecture since the linearity does not depend on the frequency tuning characteristic of oscillators unlike conventional noise shaping time-based ADCs. With the sampling frequency of 10MHz, the prototype achieves spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) of 66dB and 56dB, respectively, when the signal bandwidth is 500kHz.\",\"PeriodicalId\":367154,\"journal\":{\"name\":\"2011 IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS2.2011.6027172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS2.2011.6027172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A time-based noise shaping analog-to-digital converter using a gated-ring oscillator
In this paper, a time-based analog-to-digital converter (ADC) with first order noise shaping property is presented. The ADC consists of a pulse-width modulator (PWM) and a time-to-digital converter (TDC) based on a gated-ring oscillator. A prototype is designed in 0.18µm CMOS and simulated to verify the concept. The ADC shows high linearity despite the open loop architecture since the linearity does not depend on the frequency tuning characteristic of oscillators unlike conventional noise shaping time-based ADCs. With the sampling frequency of 10MHz, the prototype achieves spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) of 66dB and 56dB, respectively, when the signal bandwidth is 500kHz.