{"title":"基于4b/4b/8b精密电荷域8T-SRAM的CiM用于CNN处理","authors":"Qibang Zang, W. Goh, Y. Chong, A. Do","doi":"10.1109/AICAS57966.2023.10168593","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CiM) is a promising solution for solving the bottleneck of frequent data movement between the memory and processor in Von-Neumann architecture. In conventional multi-bit CiM architecture, when computing N-bit input and N-bit weight MAC operation, 2N 1 cycles are needed for N-bit input modulation and normally 3-4−cycles with complex switch operation are needed for N-bit weight realization, which significantly degrades the final throughput and power efficiency. In this work, a C-2C DAC built in the 8T SRAM CiM array is designed for 4-bit weight and 4-bit input MAC operation, which can be completed in just one cycle. In the final power efficiency evaluation, our 4b/4b/8b CiM architecture attained up to 640 TOPS/W (normalized to 1b/1b/1b precision) which is a 6-10 times improvement as compared to the conventional multi-bit CiM architectures. The proposed architecture with 4b/4b/8b precision can provide 91.47% and 68.10% accuracy on CIFAR-10 and CIFAR-100 dataset classification, respectively.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4b/4b/8b Precision Charge-Domain 8T-SRAM Based CiM for CNN Processing\",\"authors\":\"Qibang Zang, W. Goh, Y. Chong, A. Do\",\"doi\":\"10.1109/AICAS57966.2023.10168593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compute-in-memory (CiM) is a promising solution for solving the bottleneck of frequent data movement between the memory and processor in Von-Neumann architecture. In conventional multi-bit CiM architecture, when computing N-bit input and N-bit weight MAC operation, 2N 1 cycles are needed for N-bit input modulation and normally 3-4−cycles with complex switch operation are needed for N-bit weight realization, which significantly degrades the final throughput and power efficiency. In this work, a C-2C DAC built in the 8T SRAM CiM array is designed for 4-bit weight and 4-bit input MAC operation, which can be completed in just one cycle. In the final power efficiency evaluation, our 4b/4b/8b CiM architecture attained up to 640 TOPS/W (normalized to 1b/1b/1b precision) which is a 6-10 times improvement as compared to the conventional multi-bit CiM architectures. The proposed architecture with 4b/4b/8b precision can provide 91.47% and 68.10% accuracy on CIFAR-10 and CIFAR-100 dataset classification, respectively.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
4b/4b/8b Precision Charge-Domain 8T-SRAM Based CiM for CNN Processing
Compute-in-memory (CiM) is a promising solution for solving the bottleneck of frequent data movement between the memory and processor in Von-Neumann architecture. In conventional multi-bit CiM architecture, when computing N-bit input and N-bit weight MAC operation, 2N 1 cycles are needed for N-bit input modulation and normally 3-4−cycles with complex switch operation are needed for N-bit weight realization, which significantly degrades the final throughput and power efficiency. In this work, a C-2C DAC built in the 8T SRAM CiM array is designed for 4-bit weight and 4-bit input MAC operation, which can be completed in just one cycle. In the final power efficiency evaluation, our 4b/4b/8b CiM architecture attained up to 640 TOPS/W (normalized to 1b/1b/1b precision) which is a 6-10 times improvement as compared to the conventional multi-bit CiM architectures. The proposed architecture with 4b/4b/8b precision can provide 91.47% and 68.10% accuracy on CIFAR-10 and CIFAR-100 dataset classification, respectively.