一种用于快速云数据检索的高度分布式计算框架

Amir H. Basirat, Asad I. Khan, B. Srinivasan
{"title":"一种用于快速云数据检索的高度分布式计算框架","authors":"Amir H. Basirat, Asad I. Khan, B. Srinivasan","doi":"10.1109/ICMLA.2015.96","DOIUrl":null,"url":null,"abstract":"Unlike the existing relational, hierarchical and object-oriented schemes, associative models can analyze data in similar ways to which our brain links information. Such interactions when implemented in voluminous data clouds can assist in searching for overarching relations in complex and highly distributed data sets with speed and accuracy. In this paper, a different perspective of data recognition will be considered. Rather than looking at conventional approaches, such as statistical computations and deterministic learning schemes, this paper will be focusing on distributed processing approach for scalable data recognition and processing through applying an access scheme that will enable fast data retrieval across multiple records and data segments associatively, utilizing a parallel approach. Doing so will yield a new form of databaselike functionality that can scale up or down over the available infrastructure without interruption or degradation, dynamically and automatically. In our proposed model, data records are treated as patterns. As a result, data storage and retrieval is performed using a distributed pattern recognition approach that is implemented through the integration of loosely-coupled computational networks, followed by a divide-and-distribute approach that facilitates distribution of these networks within the cloud dynamically.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Distributable Computational Framework for Fast Cloud Data Retrieval\",\"authors\":\"Amir H. Basirat, Asad I. Khan, B. Srinivasan\",\"doi\":\"10.1109/ICMLA.2015.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the existing relational, hierarchical and object-oriented schemes, associative models can analyze data in similar ways to which our brain links information. Such interactions when implemented in voluminous data clouds can assist in searching for overarching relations in complex and highly distributed data sets with speed and accuracy. In this paper, a different perspective of data recognition will be considered. Rather than looking at conventional approaches, such as statistical computations and deterministic learning schemes, this paper will be focusing on distributed processing approach for scalable data recognition and processing through applying an access scheme that will enable fast data retrieval across multiple records and data segments associatively, utilizing a parallel approach. Doing so will yield a new form of databaselike functionality that can scale up or down over the available infrastructure without interruption or degradation, dynamically and automatically. In our proposed model, data records are treated as patterns. As a result, data storage and retrieval is performed using a distributed pattern recognition approach that is implemented through the integration of loosely-coupled computational networks, followed by a divide-and-distribute approach that facilitates distribution of these networks within the cloud dynamically.\",\"PeriodicalId\":288427,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2015.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与现有的关系、层次和面向对象的方案不同,关联模型可以用与大脑连接信息类似的方式分析数据。当在海量数据云中实现这种交互时,可以帮助快速准确地搜索复杂和高度分布式数据集中的总体关系。在本文中,我们将从不同的角度来考虑数据识别。本文不是着眼于传统的方法,如统计计算和确定性学习方案,而是将重点放在分布式处理方法上,通过应用一种访问方案来进行可扩展的数据识别和处理,该访问方案将利用并行方法跨多个记录和数据段进行快速数据检索。这样做将产生一种新形式的类似数据库的功能,这种功能可以在可用的基础设施上动态和自动地向上或向下扩展,而不会中断或降级。在我们提出的模型中,数据记录被视为模式。因此,使用分布式模式识别方法执行数据存储和检索,该方法是通过松耦合计算网络的集成实现的,然后是一种分而分发的方法,该方法促进了这些网络在云中动态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Distributable Computational Framework for Fast Cloud Data Retrieval
Unlike the existing relational, hierarchical and object-oriented schemes, associative models can analyze data in similar ways to which our brain links information. Such interactions when implemented in voluminous data clouds can assist in searching for overarching relations in complex and highly distributed data sets with speed and accuracy. In this paper, a different perspective of data recognition will be considered. Rather than looking at conventional approaches, such as statistical computations and deterministic learning schemes, this paper will be focusing on distributed processing approach for scalable data recognition and processing through applying an access scheme that will enable fast data retrieval across multiple records and data segments associatively, utilizing a parallel approach. Doing so will yield a new form of databaselike functionality that can scale up or down over the available infrastructure without interruption or degradation, dynamically and automatically. In our proposed model, data records are treated as patterns. As a result, data storage and retrieval is performed using a distributed pattern recognition approach that is implemented through the integration of loosely-coupled computational networks, followed by a divide-and-distribute approach that facilitates distribution of these networks within the cloud dynamically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信