稀疏辅助特征编码器蒙特卡罗去噪

Siyuan Fu, Yifan Lu, Xiao Hua Zhang, Ning Xie
{"title":"稀疏辅助特征编码器蒙特卡罗去噪","authors":"Siyuan Fu, Yifan Lu, Xiao Hua Zhang, Ning Xie","doi":"10.1145/3476124.3488631","DOIUrl":null,"url":null,"abstract":"Fast Denoising Monte Carlo path tracing is very desirable. Existing learning-based real-time methods concatenate auxiliary buffers (i.e., albedo, normal, and depth) with noisy colors as input. Such structures cannot effectively extract rich information from auxiliary buffers, however. In this work, we facilitate the U-shape kernel-prediction network with a sparse auxiliary feature encoder. Sparse convolutions can focus solely on regions whose inputs have changed and reuse the history features in other regions. With sparse convolutions, the computational complexity of the auxiliary feature encoder is reduced by 50-70% without apparent performance drops.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monte Carlo Denoising with a Sparse Auxiliary Feature Encoder\",\"authors\":\"Siyuan Fu, Yifan Lu, Xiao Hua Zhang, Ning Xie\",\"doi\":\"10.1145/3476124.3488631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast Denoising Monte Carlo path tracing is very desirable. Existing learning-based real-time methods concatenate auxiliary buffers (i.e., albedo, normal, and depth) with noisy colors as input. Such structures cannot effectively extract rich information from auxiliary buffers, however. In this work, we facilitate the U-shape kernel-prediction network with a sparse auxiliary feature encoder. Sparse convolutions can focus solely on regions whose inputs have changed and reuse the history features in other regions. With sparse convolutions, the computational complexity of the auxiliary feature encoder is reduced by 50-70% without apparent performance drops.\",\"PeriodicalId\":199099,\"journal\":{\"name\":\"SIGGRAPH Asia 2021 Posters\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2021 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476124.3488631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

快速去噪蒙特卡罗路径跟踪是非常可取的。现有的基于学习的实时方法将辅助缓冲区(即反照率,法线和深度)与噪声颜色作为输入连接起来。然而,这种结构不能有效地从辅助缓冲区中提取丰富的信息。在这项工作中,我们使用稀疏辅助特征编码器来简化u形核预测网络。稀疏卷积可以只关注输入发生变化的区域,并在其他区域重用历史特征。使用稀疏卷积,辅助特征编码器的计算复杂度降低了50-70%,而性能没有明显下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte Carlo Denoising with a Sparse Auxiliary Feature Encoder
Fast Denoising Monte Carlo path tracing is very desirable. Existing learning-based real-time methods concatenate auxiliary buffers (i.e., albedo, normal, and depth) with noisy colors as input. Such structures cannot effectively extract rich information from auxiliary buffers, however. In this work, we facilitate the U-shape kernel-prediction network with a sparse auxiliary feature encoder. Sparse convolutions can focus solely on regions whose inputs have changed and reuse the history features in other regions. With sparse convolutions, the computational complexity of the auxiliary feature encoder is reduced by 50-70% without apparent performance drops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信