局部无网格法的低积分性能

W. Vélez, T. Araújo, A. Portela
{"title":"局部无网格法的低积分性能","authors":"W. Vélez, T. Araújo, A. Portela","doi":"10.2495/BE410101","DOIUrl":null,"url":null,"abstract":"The Meshfree Method with reduced integration (ILMF) is derived through the work theorem of structures theory. In the formulation of the ILMF, the kinematically-admissible strain field is an arbitrary rigid-body displacement; as a consequence, the domain term is canceled out and the work theorem is reduced to regular local boundary terms only. The moving least squares (MLS) approximation of the elastic field is used to construct the trial function in this local meshfree formulation. ILMF has a high performance in problems with irregular nodal arrangement leading to accurate numerical results. This paper presents the size effect of the irregularity nodal arrangement parameter (cn) on three different nodal discretization to solve the Timoshenko cantilever beam using values fixed for the local support domain (αs) and the local quadrature domain (αq). Results obtained are optimal for 2D plane stress problems when compared with the exact solution.","PeriodicalId":208184,"journal":{"name":"Boundary Elements and other Mesh Reduction Methods XLI","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIGH PERFORMANCE OF LOCAL MESHFREE METHOD WITH REDUCED INTEGRATION\",\"authors\":\"W. Vélez, T. Araújo, A. Portela\",\"doi\":\"10.2495/BE410101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Meshfree Method with reduced integration (ILMF) is derived through the work theorem of structures theory. In the formulation of the ILMF, the kinematically-admissible strain field is an arbitrary rigid-body displacement; as a consequence, the domain term is canceled out and the work theorem is reduced to regular local boundary terms only. The moving least squares (MLS) approximation of the elastic field is used to construct the trial function in this local meshfree formulation. ILMF has a high performance in problems with irregular nodal arrangement leading to accurate numerical results. This paper presents the size effect of the irregularity nodal arrangement parameter (cn) on three different nodal discretization to solve the Timoshenko cantilever beam using values fixed for the local support domain (αs) and the local quadrature domain (αq). Results obtained are optimal for 2D plane stress problems when compared with the exact solution.\",\"PeriodicalId\":208184,\"journal\":{\"name\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/BE410101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Elements and other Mesh Reduction Methods XLI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BE410101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用结构理论的功定理,导出了简化积分的无网格法。在ILMF公式中,运动允许应变场为任意刚体位移;结果,定义域项被消去,功定理被简化为正则局部边界项。利用弹性场的移动最小二乘近似构造了该局部无网格公式中的试函数。在节点排列不规则的问题上,ILMF具有很高的性能,可以得到精确的数值结果。本文利用局部支撑域(αs)和局部正交域(αq)的定值,研究了不规则节点布置参数(cn)对三种不同节点离散解Timoshenko悬臂梁的尺寸效应。与精确解相比,所得结果对二维平面应力问题是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIGH PERFORMANCE OF LOCAL MESHFREE METHOD WITH REDUCED INTEGRATION
The Meshfree Method with reduced integration (ILMF) is derived through the work theorem of structures theory. In the formulation of the ILMF, the kinematically-admissible strain field is an arbitrary rigid-body displacement; as a consequence, the domain term is canceled out and the work theorem is reduced to regular local boundary terms only. The moving least squares (MLS) approximation of the elastic field is used to construct the trial function in this local meshfree formulation. ILMF has a high performance in problems with irregular nodal arrangement leading to accurate numerical results. This paper presents the size effect of the irregularity nodal arrangement parameter (cn) on three different nodal discretization to solve the Timoshenko cantilever beam using values fixed for the local support domain (αs) and the local quadrature domain (αq). Results obtained are optimal for 2D plane stress problems when compared with the exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信